I want to make a plot with square root scale using Python:
However, I have no idea how to make it. Matplotlib allows to make log scale but in this case I need something like power function scale.
解决方案
You can make your own ScaleBase class to do this. I have modified the example from here (which made a square-scale, not a square-root-scale) for your purposes. Also, see the documentation here.
Note that to do this properly, you should probably also create your own custom tick locator; I haven't done that here though; I just manually set the major and minor ticks using ax.set_yticks().
import matplotlib.scale as mscale
import matplotlib.pyplot as plt
import matplotlib.transforms as mtransforms
import matplotlib.ticker as ticker
import numpy as np
class SquareRootScale(mscale.ScaleBase):
"""
ScaleBase class for generating square root scale.
"""
name = 'squareroot'
def __init__(self, axis, **kwargs):
# note in older versions of matplotlib (<3.1), this worked fine.
# mscale.ScaleBase.__init__(self)
# In newer versions (>=3.1), you also need to pass in `axis` as an arg
mscale.ScaleBase.__init__(self, axis)
def set_default_locators_and_formatters(self, axis):
axis.set_major_locator(ticker.AutoLocator())
axis.set_major_formatter(ticker.ScalarFormatter())
axis.set_minor_locator(ticker.NullLocator())
axis.set_minor_formatter(ticker.NullFormatter())
def limit_range_for_scale(self, vmin, vmax, minpos):
return max(0., vmin), vmax
class SquareRootTransform(mtransforms.Transform):
input_dims = 1
output_dims = 1
is_separable = True
def transform_non_affine(self, a):
return np.array(a)**0.5
def inverted(self):
return SquareRootScale.InvertedSquareRootTransform()
class InvertedSquareRootTransform(mtransforms.Transform):
input_dims = 1
output_dims = 1
is_separable = True
def transform(self, a):
return np.array(a)**2
def inverted(self):
return SquareRootScale.SquareRootTransform()
def get_transform(self):
return self.SquareRootTransform()
mscale.register_scale(SquareRootScale)
fig, ax = plt.subplots(1)
ax.plot(np.arange(0, 9)**2, label='$y=x^2$')
ax.legend()
ax.set_yscale('squareroot')
ax.set_yticks(np.arange(0,9,2)**2)
ax.set_yticks(np.arange(0,8.5,0.5)**2, minor=True)
plt.show()