前言
前面的YOLOv2推文详细讲解了YOLOv2的算法原理,但官方论文没有像YOLOv1那样提供YOLOv2的损失函数,难怪Ng说YOLO是目标检测中最难懂的算法。今天我们尝试结合DarkNet的源码来分析YOLOv2的损失函数。
关键点回顾
直接位置预测
YOLOv2借鉴RPN网络使用Anchor boxes来预测边界框相对于先验框的offsets。边界框的实际中心位置
上面的公式也是Faster-RCNN中预测边界框的方式。但上面的预测方式是没有约束的,预测的边界框容易向任何方向偏移,例如当
综上,根据边界框预测的4个偏移值
其中,
细粒度特征
YOLOv2提取Darknet-19最后一个max pool层的输入,得到26x26x512的特征图。经过1x1x64的卷积以降低特征图的维度,得到26x26x64的特征图,然后经过pass through层的处理变成13x13x256的特征图(抽取原特征图每个2x2的局部区域组成新的channel,即原特征图大小降低4倍,channel增加4倍),再与13x13x1024大小的特征图连接,变成13x13x1280的特征图,最后在这些特征图上做预测。使用Fine-Grained Features,YOLOv2的性能提升了1%。这个过程可以在下面的YOLOv2的结构图中看得很清楚:
这个地方今天还要补充一点,那就是passthrough层到底是怎么操作的,在DarkNet中passthough层叫作reorg_layer,可以用下图来表示这个操作:
训练
上篇推文讲了YOLOv2的训练分为三个阶段,具体就不再赘述了。这里主要重新关注一下训练后的维度变化,我们从上一小节可以看到最后YOLOv2的输出维度是
和训练采用的数据集有关系。由于anchors数为5,对于VOC数据集输出的channels数就是125,而对于COCO数据集则为425。这里以VOC数据集为例,最终的预测矩阵为
YOLOv2的模型结构
损失函数
接下来就说一说今天的主题,损失函数。损失函数我看网上的众多讲解,发现有两种解释。
解释1
YOLOv2的损失函数和YOLOv1一样,对于训练集中的ground truth,中心落在哪个cell,那么该cell的5个Anchor box对应的边界框就负责预测它,具体由哪一个预测同样也是根据IOU计算后卡阈值来确定的,最后选IOU值最大的那个。这也是建立在每个Cell至多含有一个目标的情下,实际上也基本不会出现多余1个的情况。和ground truth匹配上的先验框负责计算坐标误差,置信度误差以及分类误差,而其它4个边界框只计算置信度误差。这个解释参考的YOLOv2实现是darkflow.源码地址为:https://github.com/thtrieu/darkflow
解释2
在官方提供的Darknet中,YOLOv2的损失函数可以不是和YOLOv1一样的,损失函数可以用下图来进行表示:
可以看到这个损失函数是相当复杂的,损失函数的定义在Darknet/src/region_layer.c中。对于上面这一堆公式,我们先简单看一下,然后我们在源码中去找到对应部分。这里的
- 第一部分:
第一项需要好好解释一下,这个loss是计算background的置信度误差,这也是YOLO系列算法的特色,但是用哪些预测框来预测背景呢?这里需要计算各个预测框和所有的ground truth之间的IOU值,并且取最大值记作MaxIOU,如果该值小于一定的阈值,YOLOv2论文取了0.6,那么这个预测框就标记为background,需要计算
- 第二部分:
这一部分是计算Anchor boxes和预测框的坐标误差,但是只在前12800个iter计算,这一项应该是促进网络学习到Anchor的形状。
- 第三部分:
这一部分计算的是和ground truth匹配的预测框各部分的损失总和,包括坐标损失,置信度损失以及分类损失。 3.1 坐标损失 这里的匹配原则是指对于某个特定的ground truth,首先要计算其中心点落在哪个cell上,然后计算这个cell的5个先验框和grond truth的IOU值,计算IOU值的时候不考虑坐标只考虑形状,所以先将Anchor boxes和ground truth的中心都偏移到同一位置,然后计算出对应的IOU值,IOU值最大的先验框和ground truth匹配,对应的预测框用来预测这个ground truth。 3.2 置信度损失 在计算obj置信度时, 增加了一项
我看了一篇讲解YOLOv2损失函数非常好的文章:https://www.cnblogs.com/YiXiaoZhou/p/7429481.html 。里面还有一个关键点:
在计算boxes的
代码实现
贴一下YOLOv2在Keras上的复现代码,地址为:https://github.com/yhcc/yolo2 。网络结构如下,可以结合上面可视化图来看:
def darknet(images, n_last_channels=425):
"""Darknet19 for YOLOv2"""
net = conv2d(images, 32, 3, 1, name="conv1")
net = maxpool(net, name="pool1")
net = conv2d(net, 64, 3, 1, name="conv2")
net = maxpool(net, name="pool2")
net = conv2d(net, 128, 3, 1, name="conv3_1")
net = conv2d(net, 64, 1, name="conv3_2")
net = conv2d(net, 128, 3, 1, name="conv3_3")
net = maxpool(net, name="pool3")
net = conv2d(net, 256, 3, 1, name="conv4_1")
net = conv2d(net, 128, 1, name="conv4_2")
net = conv2d(net, 256, 3, 1, name="conv4_3")
net = maxpool(net, name="pool4")
net = conv2d(net, 512, 3, 1, name="conv5_1")
net = conv2d(net, 256, 1, name="conv5_2")
net = conv2d(net, 512, 3, 1, name="conv5_3")
net = conv2d(net, 256, 1, name="conv5_4")
net = conv2d(net, 512, 3, 1, name="conv5_5")
shortcut = net
net = maxpool(net, name="pool5")
net = conv2d(net, 1024, 3, 1, name="conv6_1")
net = conv2d(net, 512, 1, name="conv6_2")
net = conv2d(net, 1024, 3, 1, name="conv6_3")
net = conv2d(net, 512, 1, name="conv6_4")
net = conv2d(net, 1024, 3, 1, name="conv6_5")
# ---------
net = conv2d(net, 1024, 3, 1, name="conv7_1")
net = conv2d(net, 1024, 3, 1, name="conv7_2")
# shortcut
shortcut = conv2d(shortcut, 64, 1, name="conv_shortcut")
shortcut = reorg(shortcut, 2)
net = tf.concat([shortcut, net], axis=-1)
net = conv2d(net, 1024, 3, 1, name="conv8")
# detection layer
net = conv2d(net, n_last_channels, 1, batch_normalize=0,
activation=None, use_bias=True, name="conv_dec")
return net
然后,网络经过我们介绍的损失函数优化训练以后,对网络输出结果进行解码得到最终的检测结果,这部分代码如下:
def decode(detection_feat, feat_sizes=(13, 13), num_classes=80,
anchors=None):
"""decode from the detection feature"""
H, W = feat_sizes
num_anchors = len(anchors)
detetion_results = tf.reshape(detection_feat, [-1, H * W, num_anchors,
num_classes + 5])
bbox_xy = tf.nn.sigmoid(detetion_results[:, :, :, 0:2])
bbox_wh = tf.exp(detetion_results[:, :, :, 2:4])
obj_probs = tf.nn.sigmoid(detetion_results[:, :, :, 4])
class_probs = tf.nn.softmax(detetion_results[:, :, :, 5:])
anchors = tf.constant(anchors, dtype=tf.float32)
height_ind = tf.range(H, dtype=tf.float32)
width_ind = tf.range(W, dtype=tf.float32)
x_offset, y_offset = tf.meshgrid(height_ind, width_ind)
x_offset = tf.reshape(x_offset, [1, -1, 1])
y_offset = tf.reshape(y_offset, [1, -1, 1])
# decode
bbox_x = (bbox_xy[:, :, :, 0] + x_offset) / W
bbox_y = (bbox_xy[:, :, :, 1] + y_offset) / H
bbox_w = bbox_wh[:, :, :, 0] * anchors[:, 0] / W * 0.5
bbox_h = bbox_wh[:, :, :, 1] * anchors[:, 1] / H * 0.5
bboxes = tf.stack([bbox_x - bbox_w, bbox_y - bbox_h,
bbox_x + bbox_w, bbox_y + bbox_h], axis=3)
return bboxes, obj_probs, class_probs
补充
这个损失函数最难的地方应该是YOLOv2利用sigmoid函数计算默认框坐标之后怎么梯度回传,这部分可以看下面的代码(来自Darknet源码):
// box误差函数,计算梯度
float delta_region_box(box truth, float *x, float *biases, int n, int index, int i, int j, int w, int h, float *delta, float scale, int stride)
{
box pred = get_region_box(x, biases, n, index, i, j, w, h, stride);
float iou = box_iou(pred, truth);
// 计算ground truth的offsets值
float tx = (truth.x*w - i);
float ty = (truth.y*h - j);
float tw = log(truth.w*w / biases[2*n]);
float th = log(truth.h*h / biases[2*n + 1]);
delta[index + 0*stride] = scale * (tx - x[index + 0*stride]);
delta[index + 1*stride] = scale * (ty - x[index + 1*stride]);
delta[index + 2*stride] = scale * (tw - x[index + 2*stride]);
delta[index + 3*stride] = scale * (th - x[index + 3*stride]);
return iou;
}
结合一下我们前面介绍的公式,这就是一个逆过程,现在是不是清晰一些了?有任何问题欢迎在留言区和我讨论哦。
后记
今天就介绍到这里了,YOLOv2的损失函数实现都在region_layer.c里面了,同时推荐一下我的一个Darknet源码解析项目,我会在里面努力解析YOLO目标检测算法的细节,地址为:https://github.com/BBuf/Darknet 。明天开始讲解YOLOv3,后面安排一下YOLOv3的实战,就用NCNN和YOLOv3为例子吧。
参考
https://zhuanlan.zhihu.com/p/35325884 https://www.cnblogs.com/YiXiaoZhou/p/7429481.html https://github.com/yhcc/yolo2
欢迎关注我的微信公众号GiantPadaCV,期待和你一起交流机器学习,深度学习,图像算法,优化技术,比赛及日常生活等。