计算基分类器在训练集上的分类误差率_基于对抗训练深度神经网络的时间序列分类...

fcd92ed48cb518306ec14d1eb8f239f0.png

基于对抗训练深度神经网络的时间序列分类

题目:

Adversarial Attacks on Deep Neural Networks for Time Series Classification

作者:

H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, P. Muller

来源:

Accepted at IJCNN 2019

Machine Learning (cs.LG)

Submitted on 17 Mar 2019

文档链接:

arXiv:1903.07054

代码链接:

https://github.com/hfawaz/ijcnn19attacks

摘要

在从医学和安全到人类活动识别和食品安全的许多实际数据挖掘任务中遇到时间序列分类(TSC)问题。随着近来深度神经网络在计算机视觉和自然语言处理等各个领域的成功,研究人员开始采用这些技术来解决时间序列数据挖掘问题。然而,据我们所知,之前的工作没有考虑过深度学习模型对对抗性时间序列示例的脆弱性,这可能使得在分类器做出的决定至关重要的情况下(例如医学和安全性)使它们不可靠。对于计算机视觉问题,通过改变图像并添加难以察觉的噪声量来欺骗网络错误地对输入图像进行分类,已经证明这种攻击非常容易。在这一系列工作之后,我们建议利用现有的对抗性攻击机制为输入时间序列添加特殊噪声,以便在测试时对实例进行分类时降低网络的置信度。我们的研究结果表明,目前最先进的深度学习时间序列分类器容易受到对抗性攻击,这种攻击可能在食品安全和质量保证等多个领域产生重大影响。在测试时对实例进行分类时的信心。我们的研究结果表明,目前最先进的深度学习时间序列分类器容易受到对抗性攻击,这种攻击可能在食品安全和质量保证等多个领域产生重大影响。在测试时对实例进行分类时的信心。我们的研究结果表明,目前最先进的深度学习时间序列分类器容易受到对抗性攻击,这种攻击可能在食品安全和质量保证等多个领域产生重大影响。

英文原文

Time Series Classification (TSC) problems are encountered in many real life data mining tasks ranging from medicine and security to human activity recognition and food safety. With the recent success of deep neural networks in various domains such as computer vision and natural language processing, researchers started adopting these techniques for solving time series data mining problems. However, to the best of our knowledge, no previous work has considered the vulnerability of deep learning models to adversarial time series examples, which could potentially make them unreliable in situations where the decision taken by the classifier is crucial such as in medicine and security. For computer vision problems, such attacks have been shown to be very easy to perform by altering the image and adding an imperceptible amount of noise to trick the network into wrongly classifying the input image. Following this line of work, we propose to leverage existing adversarial attack mechanisms to add a special noise to the input time series in order to decrease the network's confidence when classifying instances at test time. Our results reveal that current state-of-the-art deep learning time series classifiers are vulnerable to adversarial attacks which can have major consequences in multiple domains such as food safety and quality assurance.

要点

在这篇论文中,我们提出,转移和适应的对抗性攻击已被证明是良好的工作,对图像的时间序列数据。我们也提出了一个实验研究,使用的85个数据集的UCR档案显示,神经网络易于对抗攻击。我们强调了现实生活中特定的用例,以强调此类攻击在现实环境中的重要性,即食品质量和安全、车辆传感器和电力消耗。我们的研究结果表明,时间序列数据的深层网络很容易受到与计算机视觉类似的攻击。因此,本文阐明了防范此类攻击的必要性,特别是当深度学习用于敏感的TSC应用程序时。我们还证明了使用一种网络体系结构学习的对抗性时间序列可以转移到不同的体系结构中。最后,我们讨论了一些机制,以防止这些攻击,同时使模型更强大的对抗性的例子。

我们的主要贡献是

•TSC任务对抗性攻击的定义和形式化。

•基于图像的攻击向时间序列数据的传输和适应。

•在UCR存档数据集上对这些方法进行实证研究。

•一组在现实场景中强调此类攻击重要性的用例。

•生成对抗性时间序列的开源框架。

•UCR归档中每个数据集的一组对抗性时间序列。

•关于该主题的未来研究中需要考虑的开放问题列表。

图1:应用一个小扰动(来自包含咖啡豆摄谱仪的咖啡数据集[22]的时间序列)后被深度网络错误分类的扰动时间序列示例

c0d5064f54b8028653cba03360f5e996.png

图2:通过添加使用快速梯度符号法(FGSM)计算的难以察觉的噪声,干扰来自两个ecg数据集的输入时间序列的分类。

e7449d3357d35b1f4d6d8ff4e28f46e5.png

图3:时间序列分类的深剩余网络(ResNet)体系结构(TSC)

1fde5ad20ec0f8fc0508b427c1f4748e.png

图4:两种攻击(FGSM和BIM)相对于ResNet原始精度的精度变化

82a80574f1a398548ef2000ac68f3cd2.png

图5:多维标度(MDS)显示了微扰时间序列在整个数据集Ham的测试集上的分布,在执行BIM攻击后,准确率从80%下降到21%。

11bffcadfa0f824a38582adc45b20124.png

图6:多维尺度(MDS)显示了在执行FGSM攻击后,扰动时间序列在整个咖啡数据集测试集上的分布,其精度从100%下降到50%。

cba1877c1ab9c97dfaa2883dc9f9846e.png

图7:FGSM和BIM攻击FordA时扰动量的精度变化。

585bc1a4b033eaa792eb0a93f401ac17.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值