NIPS2018深度学习(20)|亮点: 双向RNN时间序列;对抗自编码异常检测;脉冲神经网络(论文及代码)...

本文介绍了NIPS2018会议上关于深度学习的三项研究:1) BRITS,一种基于双向RNN的时间序列缺失值填补方法;2) 利用对抗自编码器进行异常检测;3) 提出了一种混合宏微观级反向传播训练深脉冲神经网络的算法。这些方法在各自领域表现优秀,如时间序列数据处理、异常检测和低功耗神经网络训练。
摘要由CSDN通过智能技术生成

[1] BRITS: Bidirectional Recurrent Imputation for Time Series

Wei Cao, Dong Wang, Jian Li, Hao Zhou, Yitan Li, Lei Li

Tsinghua University, Duke University, Bytedance AI Lab

https://papers.nips.cc/paper/7911-brits-bidirectional-recurrent-imputation-for-time-series.pdf

时间序列在很多分类或者回归中都会用到。但是,在实际应用中,时间序列可能会包含很多缺失值。给定多个可能有关联的时间序列,补充缺失值同时对类别标签进行预测非常重要。

现有的填补方法通常对潜在的数据生成过程加以较强的假设,比如状态空间中的线性动力学。这篇文章提出一种新的适用于时间序列的缺失值填补方法,简称BRITS,该方法基于循环神经网络。

这种方法利用双向循环动力系统直接学习缺失值,不需要任何特定的假设。填补值可以看做RNN图的变量,利用反向传播可以高效更新。

BRITS具有以下几个优势:

1 可以处理多个相关时间序列中的缺失值

2 可以泛化到带有潜在非线性动力学的时间序列中

3 填补过程是数据驱动的(难道还有不是数据驱动的?),可以用于一般的缺失数据的情形。

作者们在三个真实数据集上进行了实验,空气质量数据集,医疗健康数据集以及人口活动位置数据集。实验表明,该方法不仅在缺失值填补中效果最好,而且在分类或者回归任务中效果也是最好的。

这篇文章的贡献如下

640?wx_fmt=png

带有缺失值的多变量时间序列示例如下

640?wx_fmt=png

基于无向动力学的缺失值填补示例如下

640?wx_fmt=png

几种方法的效果对比如下

640?wx_fmt=png

其中KNN和MF对应的参考资料为

The elements of statistical learning

Multiple Imputation by Chained Equations (MICE)对应的论文为

Multiple imputation by chained equations:what is it and how does it work? 2011

ImputeTS对应的论文为

imputeTS: Time Series Missing Value Imputation in R, 2017

STMVL对应的论文为

St-mvl: filling missing values in geo-sensory time series data

G

  • 2
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值