抛物线中四边形面积最大值_「解题策略」面积系列之四边形面积

本文探讨中考数学中关于抛物线内四边形面积最大值的问题,通过实例解析如何利用连对角线拆解四边形为三角形来求解,并给出了若干个中考真题的详细解答,强调了解题策略——将复杂问题简化为三角形面积的计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

除了关于三角形的各种面积问题之外,四边形问题也是中考题中常见的一种问法,鉴于四边形一般是普普通通的四边形,因此问题一般也是普普通通的问题,本文分享一点关于四边形面积的题目.

拆解四边形

如何求一个普通的四边形的面积?

0054376cb9b070d4328370f8173eec32.png

解法也很普通,连对角线分割为两个三角形即可求得面积.至于三角形面积参考前文铅垂法.

62207c2b633f97c5170dc59644466b88.png

搞定了四边形的面积,就可以看看四边形面积的最值了,还是来看点例子吧:

2019东营中考(删减)

已知抛物线y=ax²+bx-4经过点A(2,0)、B(-4,0),与y轴交于点C.

(1)求这条抛物线的解析式;

(2)如图,点P是第三象限内抛物线上的一个动点,当四边形ABPC的面积最大时,求点P的坐标;

7a10125159c4fb5b7867e2a66a516eae.png

【分析】

(1)y=0.5x²+x-4;

(2)此处四边形ABPC并非特殊四边形,所以可以考虑连接对角线将四边形拆为两个三角形求面积.

若连接AP,则△ABP和△APC均为动三角形,非最佳选择;

若连接BC,可得定△ABC和动△BPC,只要△BPC面积最大,四边形ABPC的面积便最大.

4a3123b95c6fb74ac6fe9a69aacb5c26.png

考虑A(2,0)、B(-4,0)、C(0,-4),

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值