运用spss modeler运用支持向量机_四个小项目完全解读支持向量机

支持向量机算法的基础是最大间隔分类器,最大间隔分类器虽然很简单,但不能应用于大部分数据,因为大部分属是非线性数据,无法用线性分类器进行分类,解决方案是对特征空间进行核函数映射,然后再运行最大间隔分类器。

本文跳过枯燥乏味的算法推导过程,循序渐进的介绍支持向量机分类原理,并通过四个小项目快速的理解支持向量机的线性分类,非线性分类和参数调参过程。

文末附代码和数据下载方法,可直接运行

1.最大间隔分类器

最大间隔分类器使用超平面进行分类。

什么是超平面?

假如特征空间是 p 维,超平面就是 p-1维,为了可视化超平面,假设特征空间是3个维度的,那么超平面是2维的。

超平面表达式如下:

29d37315c6cd203a82b41ba3b1897f0e.png

如果数据的特征满足上式,那么该点落在超平面上,若不满足,则该点处于超平面的两侧。

超平面如下图:

7ee1dac751c530b7d4a70e3bf53966ce.png

一般来说,如果数据可以用超平面完美地进行分离,那么超平面的数量是无限的,因为它可以向上移动、向下移动,或者对该超平面进行小角度的选择而不与观测数据接触。

超平面是无限的,如何选择最优超平面?

最优超平面是离观测点最远的分离超平面,在给定超平面的情况下,我们计算每个训练数据到超平面的距离,这就是所谓的间隔,最优超平面也就是间隔最大的分类器。如下图:

595125e4b92465f4306b0b42f53b1200.png

正如你所看到的,有三个观测点到超平面的距离相等,这三个观测点就是支持向量,若这三个观测点的位置改变了,超平面也会相应的改变。最大间隔分类器的性能只与这三个点相关,与其他数据不相关,看到这里,是不是对支持向量机算法有了新的收获了?

如果数据分布是非线性的,不能用超平面进行分类,如下图:

7f49f33bbfc5c05877eac8227d4a9c9f.png

对于这样的数据分布,我们将使用核函数映射为新的特征空间,再运行最大间隔分类器进行分类,这种方法称为支持向量机。

2.支持向量机

支持向量机的核函数映射是一种扩展特征空间的方法,核函数的核心思想是计算两个数据点的相似度。核函数的度没有限制, 使用度大于1的内核可以得到更灵活的决策边界,如下图所示:

ba34ca11a510027ba8223fde21e7a517.png

为了更好的理解核函数的选择是如何影响SVM算法,我们在四个不同的场景实现它。

项目1——线性核支持向量机

在开始之前,让我们导入一些有用的库:

083d4820ddfa0b225bd8ebb908623ec1.png

导入需要训练和测试的数据路径:

17938e336ebdba0879782ebd17ac717e.png

定义可多次调用的画图函数:

b25fcc8ad472c1fc78b7398403473002.png

散点图可视化数据:

4e7dcdd96460faa3ed22d1f57d66474c.png

散点图如下:

0b894aa12daf8e01af865f9a303ab78f.png

线性核支持向量机对该数据进行分类,其中正则化参数C=1,并使用预测值绘制超平面(hyperplane),如下图:

f2b0e9d43302480f3eb5746d13e525a5.png

由上图的分类结果可知,当正则化参数等于1时,模型对异常值不敏感。因此,低的正则化参数往往泛化能力更好,测试误差率大于验证误差率。

若增加正则化参数C等于100,那么模型对异常点异常敏感,分类结果如下图:

1315e5dcb6d717fccbe011c94ded36b7.png

由上图结果可知:C=100时,异常值能够正确分类,但是分类超平面与样本点的距离非常近,可以推断该模型处于过拟合状态,泛化能力差。

项目2——高斯核支持向量机

若分类边界是非线性的,我们常常使用高斯核进行SVM分类。

首先,可视化需要分类的数据:

a6059ec5372d4cbba187c1ebc44c6fd3.png

散点图:

c785839b40ab70919f418ea004cbf134.png

高斯核用来衡量两个数据点的相似度,公式如下:

65ac4083565ea1d751eddd76c8d5f1c9.png

其中参数σ决定相似度指标趋于零的速度。

高斯核支持向量机训练和预测代码:

8c04c159c0675430a1c2007c56ac9db2.png

预测结果及分类边界如下图:

a2cf0c8d3cb1d854ded4e42023668182.png

项目3——支持向量机调参

本节介绍用交叉验证方法选择模型最优参数,首先下载数据集:

d06ddbdc630d477da901ee3142402c7d.png

图形如下:

64ddabbf4f55b91a978e77afcc0cd451.png

使用交叉验证方法选择最优参数,代码如下:

9a2c3e81edd74a856a57415341ecc3c3.png

选择最优参数的模型(C=1,sigma=0.1)来预测和画出分类边界:

9e448731ff7cb9089f6dd68c00acb072.png

结果图:

935f231b9646a6cf62f99b07411ea577.png

项目4——用SVM进行垃圾邮件分类

下载数据,并用线性核进行分类,得到训练准确率和测试准确率。

代码如下:

0235e4042ba75c88ce1741255a5318ff.png

得到训练准确率和测试准确率的结果分别为:99.8%和98.9%。

3.小结

本文介绍了最大间隔分类器的原理,若遇到非线性边界数据的分类任务,则需要用支持向量机去构建模型。文章通过四个小项目解释线性核SVM,高斯核SVM,正则化参数C的作用以及如何用交叉验证方法选择模型的最优参数。

参与评论 您还未登录,请先 登录 后发表或查看评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:游动-白 设计师:我叫白小胖 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值