【Ryo】SPSS Modeler:SVM支持向量机在分类判别中的应用

本文通过SPSS Modeler利用SVM技术对大量人体细胞样本进行分类,以预测癌症。通过对UCI Machine Learning Repository数据集的分析,SVM模型在RBF和多项式核函数中表现出色,其中多项式核函数的预测性能更优,展示了SVM在复杂数据集上的分类潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

支持矢量机(SVM)是一项特别适合于广泛数据集的分类和回归技术。广泛数据集包含大量预测变量,例如可能会在生物信息学领域遇到(对生物化学数据和生物学数据应用信息技术)的预测变量。本文研究了一个包含大量人体细胞样本的特征的数据集,这些样本是从被认为可能会患上癌症的患者身上提取的。对原始数据的分析表明,良性样本与恶性样本之间的很多特征显著不同。目的在于开发一个SVM模型,使该模型可以使用其他患者样本中的这些细胞特征值尽早发现他们的样本是良性还是恶性。

研究模型 软件 日期
SVM支持向量机 SPSS Modeler 2020年7月12日

△△△△△本文为个人项目练习,仅供参考,如有不足欢迎讨论 △△△△△


一、样本描述

  本示例基于可以从UCI Machine Learning Repository 公开获取的数据集。数据集由数百条人体细胞样本记录组成,每条记录都包含一组细胞特征的值。每条记录中包含的字段包括:
在这里插入图片描述
标识字段包含患者的标识。来自每位患者的细胞样本特征包含在从Clump到Mit的字段中。这些字段的值按照1到10进行分级,1表示最接近于良性。Class字段包含诊断,由多步独立的医疗程序确认,用于表明样本是良性(值=2)还是恶性(值=4)。

<

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值