目标检测传统算法与神经网络结合_基于卷积神经网络的目标检测算法简介

本文介绍了目标检测的任务与传统步骤,强调了卷积神经网络在目标检测中的重要角色,特别是特征提取和分类。卷积神经网络通过不同类型的网络如LeNet、AlexNet等改进目标检测效率,但仍然面临参数设置、网络结构优化和多尺度多类别检测的挑战。
摘要由CSDN通过智能技术生成

1.什么是目标检测?

目标检测的主要任务是从图像中定位感兴趣的目标,需要准确判断每个目标的具体类别,并给出每个目标的边界框。

2.实现目标检测需要哪些步骤?

要实现目标检测,传统的方法主要分为预处理、窗口华东、特征提取、特征选择、特征分类和后处理六个步骤。

a) 预处理,对待检测图像进行图像去噪、图像增强、色彩空间转换等操作

b) 在待检测图像中滑动一个固定大小的窗口,将窗口中的子图像作为候选区

c) 利用特定算法对候选区域进行特征提取

d) 从特征向量中选择具有代表性的特征,降低特征维数

e) 利用特征分类器对特征进行分类,判定候区是否包含了目标及其类别

f) 合并判定为统一类别的相交候选区,计算出每个目标的边界框,完成目标检测。

3.目标检测算法的研究难点在哪?

主要是两个方面。第一,特征提取,即如何提高特征的表达能力和抗形变能力。第二,特征分类,即如何提高分类器的准确度和速度。

3.为什么说使用设计的特征存在缺点?

a) 设计的特征为底层特征,对目标表达能力不足

b) 设计的特征的可分性较差,导致分类错误率较高

c) 设计的特征具有针对性,很难选择单一特征应用于多目标检测,如Haar特征用于人脸检测,HOG特征用于行人检测,Strip特征用于车辆检测

5.什么是卷积神经网络?

卷积神经网络是一个层次模型,主要包括输入层,卷积层,池化层、全连接层以及输出层。

卷积神经网络是专门针对图像而设计,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值