1.什么是目标检测?
目标检测的主要任务是从图像中定位感兴趣的目标,需要准确判断每个目标的具体类别,并给出每个目标的边界框。
2.实现目标检测需要哪些步骤?
要实现目标检测,传统的方法主要分为预处理、窗口华东、特征提取、特征选择、特征分类和后处理六个步骤。
a) 预处理,对待检测图像进行图像去噪、图像增强、色彩空间转换等操作
b) 在待检测图像中滑动一个固定大小的窗口,将窗口中的子图像作为候选区
c) 利用特定算法对候选区域进行特征提取
d) 从特征向量中选择具有代表性的特征,降低特征维数
e) 利用特征分类器对特征进行分类,判定候区是否包含了目标及其类别
f) 合并判定为统一类别的相交候选区,计算出每个目标的边界框,完成目标检测。
3.目标检测算法的研究难点在哪?
主要是两个方面。第一,特征提取,即如何提高特征的表达能力和抗形变能力。第二,特征分类,即如何提高分类器的准确度和速度。
3.为什么说使用设计的特征存在缺点?
a) 设计的特征为底层特征,对目标表达能力不足
b) 设计的特征的可分性较差,导致分类错误率较高
c) 设计的特征具有针对性,很难选择单一特征应用于多目标检测,如Haar特征用于人脸检测,HOG特征用于行人检测,Strip特征用于车辆检测
5.什么是卷积神经网络?
卷积神经网络是一个层次模型,主要包括输入层,卷积层,池化层、全连接层以及输出层。
卷积神经网络是专门针对图像而设计,