svr公式推导_ML-支持向量:SVM、SVC、SVR、SMO原理推导及实现

目录

1.导出目标

2拉格朗日转换

3对偶问题:

因为是希望得出L最小时的一些参数w,b,a,但是目前很难一起求得最佳参数,所以换个思路。因为:

所以能够容易的计算出拉格朗日乘子a约束时的最坏情况是:

但是m个a的值还是无法求出,而后面会得知,根据L对w,b的求导关系,w,b可以被a表示出来,所以关键变为求a。

根据对偶关系,极大值关系可以转为极小值关系,且转换后的问题会不大于原问题,在取得极值的时候才取等号,也就是:

这样问题变为,先把w,b求导关系代入求L极小值关系,最后再寻找a的问题,最后a的求解会通过SMO等思路求解,具体SMO放到最后讲解,因为太难了。

4求对偶问题

1)求L的极小值时的w,b,求导:

得出极小值需满足如上这些关系

2)代入L求导关系式,求关于a的极大值:

所以关键是对这个函数求极大值时的a,假设通过后面的SMO找到了,记为a*,那么显然得到了w的解析式:

5 求b

因为对于所有支持向量点(正例上支持向量点位于WTx+b = 1超平面上,反例WTx+b= -1)记作(xs,ys),均有:

根据KKT条件:ai>0时,yi(WTxi+b)-1=0:(必定:WTxi+b = 1 或WTxi+b= -1)即xi必须是支持向量点,而ai=0时:

也就是说对w无影响,因此上式中w还可以简化成只考虑支持向量点计算(实际上这就是SVM称为支持向量机的原因,因为模型真正起作用的,就只是这些支持向量点):

假设我们有S个支持向量(位于WTx+b = 1,WTx+b= -1超平面上的点集),则对应我们求出S个b∗,理论上这些b∗都可以作为最终的结果, 但是我们一般采用一种更健壮的办法,即求出所有支持向量所对应的b∗,然后将其平均值作为最后的结果:

6 得出模型

ai参数求出之后,如上所示,就相当于求出了w,b了。就可以得到模型,进行预测了:

def _f(self, i):

r = self.b

for j in range(self.m):

r += self.alpha[j] * self.Y[j] * self.kernel(self.X[i], self.X[j])

return r

6.1 f(x)的约束条件:

7 核函数

现实中可能有些不存在线性的可分超平面,但是可能映射到更高维度可能就可分了,有证明显示,如果原始空间维度有限,那么一定存在高维特征空间使样本可分。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值