svr公式推导_支持向量回归(SVR)的详细介绍以及推导算法

本文详细介绍了支持向量回归(SVR)的背景、原理和数学模型。SVR作为SVM的一个分支,通过设置间隔带和容忍偏差(ϵ)来优化模型,只对超出间隔带的支持向量计算损失。文中还探讨了线性硬间隔和软间隔SVR,并引入松弛变量解决实际问题。此外,文章提到了非线性映射与核函数的概念,以解决低维数据的非线性问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 SVR背景

2 SVR原理

3 SVR数学模型

SVR的背景

SVR做为SVM的分支从而被提出,一张图介绍SVR与SVM的关系

这里两虚线之间的几何间隔r=d ∣ ∣ W ∣ ∣ \frac{d}{||W||}∣∣W∣∣d​,这里的d就为两虚线之间的函数间隔。

(一图读懂函数间隔与几何间隔)

这里的r就是根据两平行线之间的距离公式求解出来的

SVR的原理

SVR与一般线性回归的区别

SVR

一般线性回归

1.数据在间隔带内则不计算损失,当且仅当f(x)与y之间的差距的绝对值大于ϵ \epsilonϵ才计算损失

1.只要f(x)与y不相等时,就计算损失

2.通过最大化间隔带的宽度与最小化总损失来优化模型

2.通过梯度下降之后求均值来优化模型

原理:SVR在线性函数两侧制造了一个“间隔带”,间距为ϵ \epsilonϵ(也叫容忍偏差,是一个由人工设定的经验值),对所有落入到间隔带内的样本不计算损失,也就是只有支持向量才会对其函数模型产生影响,最后通过最小化总损失和最大化间隔来得出优化后的模型。

注:这里介绍一下支持向量的含义:直观解释,支持向量就是对最终w,b的计算起到作用的样本(a>0)

SVR的数学模型

3.1线

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值