1 SVR背景
2 SVR原理
3 SVR数学模型
SVR的背景
SVR做为SVM的分支从而被提出,一张图介绍SVR与SVM的关系
这里两虚线之间的几何间隔r=d ∣ ∣ W ∣ ∣ \frac{d}{||W||}∣∣W∣∣d,这里的d就为两虚线之间的函数间隔。
(一图读懂函数间隔与几何间隔)
这里的r就是根据两平行线之间的距离公式求解出来的
SVR的原理
SVR与一般线性回归的区别
SVR
一般线性回归
1.数据在间隔带内则不计算损失,当且仅当f(x)与y之间的差距的绝对值大于ϵ \epsilonϵ才计算损失
1.只要f(x)与y不相等时,就计算损失
2.通过最大化间隔带的宽度与最小化总损失来优化模型
2.通过梯度下降之后求均值来优化模型
原理:SVR在线性函数两侧制造了一个“间隔带”,间距为ϵ \epsilonϵ(也叫容忍偏差,是一个由人工设定的经验值),对所有落入到间隔带内的样本不计算损失,也就是只有支持向量才会对其函数模型产生影响,最后通过最小化总损失和最大化间隔来得出优化后的模型。
注:这里介绍一下支持向量的含义:直观解释,支持向量就是对最终w,b的计算起到作用的样本(a>0)
SVR的数学模型
3.1线