二阶系统时域特性
一、频率响应的模和相位表示 二、 线性与非线性相位 3. 信号的不失真传输条件 信号在传输过程中,相位特性或幅度特性发生改变都会引起信号波形的改变,如果这种改变是不希望发生的,那么信号即发生了失真。 理想的低通滤波器的单位冲击响应的主瓣是从 延伸到 ,所以阶跃响应就在这个时间间隔内受到最显著的变化。也就是说阶跃响应的所谓上升时间是反比于相关滤波器的带宽; 一.一阶系统 前面6.2节已经提到,例如RC回路等,此处省略。 当 、 均为实常数时,可通过对 、 因式分解将其表示成若干个一阶或二阶有理函数的连乘;或者通过部分分式展开,表示成若干个一阶或二阶有理函数相加。 §6.5 一阶与二阶连续时间系统 由LCCDE描述的连续时间LTI系统,频率响应为: First-Order and Second-Order Continuous-Time Systems 这表明LCCDE描述的LTI系统可以看成是若干个一阶或二阶系统通过级联或并联构成。 二.二阶系统 例如:RLC串联谐振电路: 对应方程为: 当 时, 1.时域特性 易求 系统处于临界阻尼状态 a. 上式可改写为: 阻尼系数、 无阻尼频率 c. 时, 、 为实数根系统处于过阻尼状态; 时, 系统处于无阻尼状态。 b.当 时, 为共轭复根,系统处于欠 阻尼状态; d. 时,二阶系统时域特性(超量,振荡,上升时间) 最佳,见P326,Fig6.22 2.频域特性 当 时, 当 时, a.模特性 时,幅频特性在 处出现峰值,其值为 ; 时系统 类似于一阶系统具有低通特性; 当 时,系统具有最平 坦的低通特性。 在对数坐标中可用两条直线近似表示。一条是低频 段的0dB线,一条是高频段的斜率为-40dB每10倍频程 的直线。 当 时,准确的对数模为: b.相位特性 时 时 时 三.有理型频率响应的Bode图 这种频率特性因子,与一阶、二阶系统的情况,其 存在倒量关系。 书P329 §6.6一阶与二阶离散时间系统 一.一阶系统 First-Order and Second-Order Discrete-Time Systems 1.时域特性 * * 第六章 信号与系统的时域和频域特性 主要内容 傅里叶变换的模和相位表示; LTI系统的模和相位表示; 理想选频滤波器的时域特性; 非理想滤波器的时域和频域特性讨论; 一阶和二阶(连续、离散时间)系统 系统的时域分析与频域分析举例 § 6.0 引言 在时域和频域,都可以用LTI系统的某一特征,对于系统进行完整描述,他们分别为: 由系统的单位冲激响应 或 在时域 由系统的频率响应 或 在频域 2. 对于实际的系统,时域和频域的要求,往往不能同 时满足,通常需要一些折衷。如P225例4.18 (连续 时间)和P272例5.12(离散时间)的情况。 它们之间存在的转换关系,往往可以简化运算,如 时域中的微分(差分)方程和卷积运算在频域都变成了代数运算,反之亦然; §6.1 傅里叶变换的模和相位 在频域,无论是连续时间还是离散时间信号,它们的傅里叶变换结果,一般来说都是复数,可以用模--相位来表示: 由于信号的傅里叶变换代表了信号的全部特征,所以我们可以认为信号的特征信息,全部包含在它的频谱即模和相位中了。 这一节将了解模和相位分别代表了信号的哪些特征。 例1.三个独立的波浪相遇(即三个波的叠加),看一下幅值不变,相位发生变化的情况下,会是怎样的情形?图6.1 例2. 在一幅图像的傅里叶变换中,图像的亮度和形状分别对应傅里叶变换的哪一个参数? 结论:a.相位值改变不影响各频率分量的大小; b.相同模值,相位不同,信号的本质属性将有很大改变(这里对船起伏的影响); c.相位的改变,将会导致信号时域特性的改变。 结论:a.模值对应于图片的亮度信息; b.相位对应的是图片的图形信息; (1)相位不同,模值相同的图像对比P304(图a与d、 f与g ) (2)相位相同,模值不同的图像对比(图e与f) §6.2 LTI系统频率响应的模和相位表示 主要内容 线性与非线性相位; 群时延; 对数模与Bode图 频率响应的模和相位表示; 一个信号特征,可以完全由