拉普拉斯算子_Mesh is Art(9):拉普拉斯算子

本文介绍了拉普拉斯算子在计算机图形学中的应用,特别是在曲面表示和处理中的重要性。拉普拉斯算子分为连续和离散两种形式,具有对称性、局部性和半正定性等性质。在离散形式中,包括均值拉普拉斯和余切拉普拉斯算子,它们在网格滤波、参数化、曲面重建等问题中起到关键作用。此外,拉普拉斯矩阵在图形拉普拉斯和几何拉普拉斯矩阵的形式下,用于描述拓扑和几何信息。
摘要由CSDN通过智能技术生成

a24127f53938fa720d692eeb4438ba2f.png

在计算机图形学中,曲面表达与处理一直是热门话题,它牵扯到几何建模、辅助设计等诸多重要应用。网格作为一种最流行的分段线性曲面表示方法,能够近似地表达原光滑曲面。本节我们将介绍网格的微分属性,它是根据某些定义在网格上的线性算子得出的,这些算子通常是网格的拉普拉斯算子的变体,提供了各种方便曲面表示与处理等应用的基础。相较于传统的被用于表达顶点位置的全局笛卡尔坐标,微分曲面表达承载着曲面局部形态、局部细节的尺寸及方向等重要几何信息。对这些信息的定义可以方便我们更好地控制、处理几何问题,本章将详细介绍拉普拉斯算子,微分表达及曲面重建等问题。

本文中,我们用来表达一个给定的三角网格,分别表示网格中的顶点集合、边集合及面集合,顶点数量记为。每个顶点可以用笛卡尔坐标表示其空间中的绝对位置,并且用来表示顶点的1-ring邻域。

连续拉普拉斯算子

拉普拉斯算子 (Laplacian Operator)是欧氏空间中的一个二阶微分算子,定义为函数的梯度的散度。对于二元函数,其在欧氏空间上的拉普拉斯算子可以写为

拉普拉斯算子可以被推广到二阶流形曲面上,称为拉普拉斯-贝尔特拉米算子 (Laplace-Beltrami Operator),定义为

除此之外,在微分几何中,对于曲面上某一点,其Laplace-Beltrami operator与该点处的平均曲率 (Mean Curvature)存在如下关系:

其中,表示该点处的平均曲率,为法向。

微分坐标 (Differential Coordinates) 是一个重要概念,它在连续的光滑曲面上的定义为

连续拉普拉斯算子的性质

  1. NULL : 由于拉普拉斯算子为函数的梯度的散度,那么说明当函数是常数时,。
  2. 对称性 (SYM) : 边上的权重是对称的 。
  3. 局部性
  • 1
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值