平均符号熵的计算公式_指标权重确定方法之熵值法

关注

听说关注了我的人

都升职加薪啦

0 1 日常工作中,经常需要确定各指标的权重,利用熵值法确定权重属于客观赋权法,从数据出发,避免过强的主观性,那我们详细了解下其原理及其是如何运作的吧。

什么是信息熵

熵是热力学的一个物理概念,是体系混乱度(或无序度)的量度。熵越大说明系统越混乱,携带的信息越少,熵越小说明系统越有序,携带的信息越多。 信息熵则借鉴了热力学中熵的概念 (注意:信息熵的符号与热力学熵应该是相反的),用于描述平均而言事件信息量大小。所以数学上,信息熵其实是事件所包含的信息量的期望。 在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。根据上面期望的定义,我们可以设想信息熵的公式大概是这样的一个格式: 信息熵=∑每种可能事件的概率*每种可能事件包含的信息量0 2

如何理解信息熵

信息熵的基本思想是从指标的无序程度,即指标熵的角度来反映指标对评价对象的区分程度,某指标的熵值越小,该指标的样本数据就越有序,样本数据间的差异就越大,对评价对象的区分能力也就越大,相应的权重也就越大。相反,某个指标的信息熵越大表明指标的变异程度越小,提供的信息量也就越少,在综合评价中所起的作用也就越小,其权重也就越小。0 3

    熵值法如何实现

1、假设数据有n行记录,m

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值