31种特征交叉模型(按时间顺序整理)

目录

1.LR:WWW 2007

2.Poly2:2010

3.FM:ICDM 2010

4.PairwiseFM:CIKM2013

5.GBDT+LR:Facebook 2014

6.FFM:RecSys 2016

7.Wide&Deep:RecSys 2016

8.FNN:ECIR 2016

9.PNN:ICDM 2016

10.Deep Crossing: KDD2016

11.Lambda FM:CIKM2016

12.DiFacto:WSDM 2016

13.F2M:NIPS 2016

14.High-order FM:NIPS 2016

15.AFM:IJCAI 2017

16.NFM:SIGIR 2017

17.DeepFM:IJCAI 2017

18.DCN:ADKDD 2017

19.FwFM:WWW 2018

20.Autoint:CIKM 2018

21.xDeepFM:SIGKDD 2018

22.Robust FM:WWW2018

23.Discrete FM:IJCAI 2018

24.SFTRL FM:KDD 2018

25.ONN/NFFM:Arxiv2019

26.HFM:AAAI2019

27.TFNET:SIGIR2020

28.AutoFIS:KDD2020

29.AoAFFM:AAAI2020

30.CAN:ArXiv2020

31.DCNV2:ArXiv2020


目前实现过的特征交叉模型,离线在线准确率结果如下:

Criteo数据集 个推池500万短视频数据集 在embedding候选集中的线上点击率
FM 0.7801 0.8845 18%
Wide&Deep 0.7817 0.9585 /
DeepFM 0.7900 0.9627 21.33%
DCN 0.7817 0.9566 23.22%
DCNv2 0.7943 0.9704 24.32%
DeepCrossing 0.7840 0.9455 /
xDeepFM 0.7371 0.9314 /
PNN 0.7862 0.9585 /
FFM 0.6078 0.8649 /
NFM 0.7910 0.9385 /
AFM 0.7543 0.8499 /

目前基于特征交互的模型可以大致分为三类:

  1. Aggregation based方法:聚合用户的历史行为序列来获得CTR预估的判别表示;

  2. Graph based方法: 将特征作为节点, 通过有向和无向图的方式连接, 在这种情况下,特征协同作用作为信息沿边缘传播的边缘权重;

  3. Combinatorial embedding方法:直接明显的组合特征的embedding;

以下为截至2020年,发表过的特征交叉相关的论文:

1.LR:WWW 2007

Predicting Clicks Estimating the Click-Through Rate for New Ads

数学形式:g(x)=w0+\sum wixi

本质:特征的加权线性组合;

优点:数学理论支撑;符合直觉,可解释性;工程化的需要(2012年GPU尚未流行);

缺点:线性模型,无法拟合非线性关系;

2.Poly2:2010

Training and Testing Low-degree Polynomial Data Mappings via Linear SVM

数学形式:

本质:特征的暴力组合;

优点:解决LR无法利用高维特征的问题;

缺点:权重参数由n变为n*n,训练复杂度太高;无选择的特征交叉方式会让one-hot格式的稀疏数据变得更加稀疏,导致大部分权重缺少训练数据,无法收敛;

3.FM:ICDM 2010

Factorization Machines

数学形式:

简化第三项:

本质:用两个向量的内积代替了两个特征的权重参数,实现为每个特征学习到一个隐向量;

优点:引入隐向量使得待训练权重数量由n*n减小为n*dim(隐向量的维度),降低训练开销,使得稀疏数据获得稠密表达;

缺点:只组合了二阶特征;

核心代码:

def call(self, inputs):
    dense_inputs, sparse_inputs = inputs
    sparse_inputs = tf.concat([tf.one_hot(sparse_inputs[:, i], \
        depth=self.feat_num[i] for i in range(sparse_inputs.shape[1])], axis=1)
    stack = tf.concat(dense_inputs, sparse_inputs], axis=1)
    first_order = self.w0 + tf.matmul(stack, self.w)
    second_order = 0.5*tf.reduce_sum(tf.pow(tf.matmul(stack, tf.transpose(self.V)), 2)-
        tf.matmul(tf.pow(stack, 2), tf.pow(tf.transpose(self.V), 2)), axis=1, keepdims=True)
    outputs = tf.nn.sigmoid(first_order + second_order)

链接:https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf

4.PairwiseFM:CIKM2013

Exploiting ranking factorization machines for microblog retrieval

本质:LTR中的pairwise是挑选一个正负样本对作为一个新的样本,即  。如果 ,则就是PairWise FM。如果,则就是很有名的RankSvm。

链接:Exploiting ranking factorization machines for microblog retrieval | Proceedings of the 22nd ACM international conference on Information & Knowledge Management

5.GBDT+LR:Facebook 2014

本质:利用GBDT自动进行特征筛选和组合,生成新的离散特征向量,再将向量输入LR模型进行预估;

优点:每棵树生成的过程是一棵标准的回归树生成过程,因此每个节点的分裂是一个自然的特征选择的过程,而多层节点的结构自然进行了有效的特征组合,也就非常高效的解决了过去非常棘手的特征选择和特征组合的问题;

缺点:GBDT容易产生过拟合;GBDT这种特征转换方式实际上丢失了大量特征的数值信息;

6.FFM:RecSys 2016

  • 2
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值