机器学习优化算法

本文详细介绍了优化算法在深度学习中的应用,包括批量梯度下降、随机梯度下降、小批量梯度下降、动量优化算法以及自适应学习率优化算法如Adagrad、RMSProp和Adam。还探讨了正则化中的L1和L2以及Bagging和Boosting的区别。这些算法在训练神经网络时,对于提高模型性能和防止过拟合起着关键作用。
摘要由CSDN通过智能技术生成

目录

1.批量梯度下降 BGD

2.随机梯度下降 SGD

3.小批量梯度下降 MBGD

4.动量优化算法

5.自适应学习率优化算法

6.正则化

7.Bagging boosting区别


1.批量梯度下降 BGD

每一次迭代时使用所有样本来进行梯度的更新
优点:
  (1)一次迭代是对所有样本进行计算,此时利用矩阵进行操作,实现了并行。
  (2)由全数据集确定的方向能够更好地代表样本总体,从而更准确地朝向极值所在的方向。当目标函数为凸函数时,BGD一定能够得到全局最优。
缺点:

  (1)当样本数目 mm 很大时,每迭代一步都需要对所有样本计算,训练过程会很慢。

2.随机梯度下降 SGD

每次迭代使用一个样本来对参数进行更新。使得训练速度加快。

优点:
  (1)由于不是在全部训练数据上的损失函数,而是在每轮迭代中,随机优化某一条训练数据上的损失函数,这样每一轮参数的更新速度大大加快。
缺点:
  (1)准确度下降。由于即使在目标函数为强凸函数的情况下,SGD仍旧无法做到线性收敛。
  (2)可能会收敛到局部最优,由于单个样本并不能代表全体样本的趋势。
  (3)不易于并行实现。

3.小批量梯度下降 MBGD

是对批量梯度下降以及随机梯度下降的一个折中办法。其思想是:每次迭代 使用 ** batch_size** 个样本来对参数进行更新。

优点:
  (1)通过矩阵运算,每次在一个batch上优化神经网络参数并不会比单个数据慢太多。
  (2)每次使用一个batch可以大大减小收敛所需要的迭代次数,同时可以使收敛到的结果更加接近梯度下降的效果。(比如上例中的30W,设置batch_size=100时,需要迭代3000次,远小于SGD的30W次)
  (3)可实现并行化。
缺点:
  (1)batch_size的不当选择可能会带来一些问题。
 

batch_size的选择带来的影响:
  (1)在合理地范围内,增大batch_size的好处:
    a. 内存利用率提高了࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值