代码下载:http://openasic.org/category/1/
运行依赖:(具体版本为当前的运行环境中的版本,并不需要完全一样)
tensorflow-gpu 1.12.0 (用于模型搭建)
numpy 1.16.2 (用于四叉树分解、导向滤波器等矩阵运算)
matplotlib 3.0.3 (图像读写)
h5py 2.8.0 (用于读入训练集和测试集,只用于预测可不需要)
参数配置说明:
运行代码时,在main函数中配置字典config以控制整个流程,各参数具体说明如下:
mode: 字符串类型,包含'train'(训练),'test'(测试),'inference'(预测)三种
ckpt_dir:字符串类型,网络的check point存储路径
train_path:字符串类型,训练集路径(仅支持.h5文件)
test_path:字符串类型,测试集路径(仅支持.h5文件)
inference_i:字符串类型,存放预测输入图像的文件夹的路径
inference_o:字符串类型,存放预测输出图像的文件夹的路径
param:模型参数,包含两个变量的list,第一个变量表示residual blocks的数量,第二个变量表示每个residual block中有多少个卷积层,训练完成后不可改变
qd_param:四叉树参数,包含两个变量的list,第一个变量表示四叉树最大分解层数,第二个变量表示分解的阈值
batch_size:整型,批次大小(这里指直方图的批次大小)
epoch:整型,训练的轮数
alpha: 浮点型,二阶正则化约束之前的系数,防止过拟合
learning_rate:浮点型,学习率
关注我们
复旦大学视频图像处理器实验室(Video&Image Processor Lab),专注于视频图像、人工智能、硬件架构与SoC芯片设计研究。VIP Lab创建了国内首个开源芯片网站(openasic.org),首发H.264、H.265视频编解码芯片IP核;研发全球首台十亿级像素视频阵列相机,并集成边端AI处理算法实现超视距、超广域的视频检测识别。VIP Lab致力于从事最前沿的图像/视频/AI技术的暴力计算、硬件芯片架构研究及技术开源与推广。
实验室网站:http://viplab.fudan.edu.cn
知乎专栏:http://zhuanlan.zhihu.com/viplab
OpenASIC:www.openasic.org
微信公众号:OpenASIC