本文为泰迪学院最新推出的数据挖掘实战专栏第三篇,本专栏将数据挖掘理论与项目案例实践相结合,可以让大家获得真实的数据挖掘学习与实践环境,更快、更好的学习数据挖掘知识与积累职业经验。 专栏中每四篇文章为一个完整的数据挖掘案例。案例介绍顺序为:先由数据案例背景提出挖掘目标,再阐述分析方法与过程,最后完成模型构建,在介绍建模过程中同时穿插操作训练,把相关的知识点嵌入相应的操作过程中。 为方便读者轻松地获取一个真实的实验环境,本专栏使用大家熟知的Python语言对样本数据进行处理以进行挖掘建模。 下面进入最终篇,上机实验及拓展思考~
实验目的 (1) 掌握Lasso回归特征选择。 (2) 构建灰色预测与神经网络预测模型。
实验内容
(1) 对搜集的某市地方财政收入以及各类别收入数据,分析识别影响地方财政收入的关键属性,数据详见:test/data/data.csv。 (2) 预测筛选出的关键影响因素的2014年、2015年的预测值。 (3) 使用关键影响因素的2014年、2015年的预测值得到某市地方财政收入2014年、2015年的预测值。
实验方法与步骤
灰色神经网络的预测算法_财政收入影响因素分析及预测模型(四)
最新推荐文章于 2023-03-05 00:33:10 发布