《计算机视觉与图像处理》最全总结之就业必备-小白易懂易上手
最近需要找工作找实习,自己就把计算机视觉方向的知识点重新梳理了一遍,看的是开课吧CV视频资料,并写了一些笔记,需要的话可转场获取。
**《计算机视觉与图像处理》视频学习资料
项目一《无人驾驶车道线分割》
涉及图像分割的内容:
项目简介,卷积神经网络回顾,上采样技术讲解
装置卷积,全卷积网络,FCN代码实战
U-Net模型讲解与Deeplab模型讲解
数据处理与训练推理
⭐服务端模型部署实战,移动端模型部署简介
实力分割,全景分割讲解
项目二《口罩实时检测》
涉及目标检测的内容:
两阶段算法Fast-RCNN
单阶段算法YOLO系列算法讲解
Anchor-Free检测算法
算法实战及训练推理
⭐算法技巧及加速方法
项目三《活体人脸身份识别》
涉及多模态活体检测的内容:
数据集CASIA-SURF及评价方法ACER讲解
Facebagnet模型详解
使用Pytorch框架构建代码
算模型压缩及落地
⭐落地方法SDK讲解
通过学习实践这三个项目,自己得到了极大的提升,特此分享自己的总结。[参考下方资料]
**学习资料捷径: **
https://download.csdn.net/download/weixin_39588099/86063992