python matlplotlib/seaborn 绘制曲线的平均值标准差阴影图

文章介绍了Seaborn库的新版本变化,从旧版的tsplot切换到使用lineplot表示均值和标准差,通过ci参数显示置信区间。通过示例展示了如何用matplotlib绘制带有平均值和标准偏差范围的曲线图,以及对随机数据进行平滑处理的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. seaborn

旧版本(0.8.1)中使用tsplot,新版本中使用lineplot
直线代表均值,阴影代表mean±std(带有置信区间,参数ci)

import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
sns.set()


def smooth(data, wd=2):
    """
    :param data: ndarray,一维或二维
    :param wd:
    :return:
    """
    if not (isinstance(wd, int) and wd > 0):
        raise ValueError('wd must be a positive integer')
    elif 1 == wd:
        return data
    else:
        weight = np.ones(wd) / wd
        if 1 == data.ndim:
            return np.convolve(weight, data, "same")
        elif 2 == data.ndim:
            smooth_data = []
            for d in data:
                d = np.convolve(weight, d, "same")
                smooth_data.append(d)
            return np.array(smooth_data)
        else:
            raise ValueError('data must be a one-dimensional or two-dimensional ndarray')


def get_data():
    returns1 = np.random.random((4, 100))        # 算法1,四个随机种子
    returns2 = np.random.random((4, 100)) + 1
    returns3 = np.random.random((4, 100)) + 2
    returns1 = smooth(returns1, 2)
    returns2 = smooth(returns2, 2)
    returns3 = smooth(returns3, 2)
    return returns1, returns2, returns3


np.random.seed(11)
data = get_data()
label = ['algo1', 'algo2', 'algo3']
df=[]
ax = range(10, 100+10)   # x轴刻度
for i in range(len(data)):
    df.append(pd.DataFrame(data[i], columns=ax).melt(var_name='episode',value_name='return'))
    df[i]['algo'] = label[i]
df=pd.concat(df, ignore_index=True)
# print(df)
sns.lineplot(x="episode", y="return", hue="algo", data=df)
plt.legend(loc='upper right')
# 'best', 'upper right', 'upper left', 'lower left', 'lower right',
#             'right', 'center left', 'center , right', 'lower center', 'upper center', 'center')
plt.title("")
plt.show()

#
# import seaborn as sns
# import matplotlib.pyplot as plt
# fmri = sns.load_dataset("fmri")
# fmri.head()
#
# sns.lineplot(data=fmri, x="timepoint", y="signal", hue="event")
# plt.show()

不进行平滑处理
在这里插入图片描述
平滑处理
在这里插入图片描述

matplotlib

画mean+/- standard deviation(std)的曲线图。

  1. 导入需要的库:matplotlib

  2. 用matplotlib.pyplot画均值曲线(图里的实线)

  3. 根据方差,用“fill_between”命令设定要填充曲线的上下限

  4. 用“fill”命令填充(图里的阴影部分)

(曲线颜色及线条粗细,填充颜色以及透明度都是在命令名后的括号里定义)
展示的结果图里画了三组数据,每组数据画法相同

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

别出BUG求求了

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值