理解 信息量、信息熵 和 信息增益

前言

最近学习机器学习。决策树一节有两个核心概念:信息量信息熵。查了一些资料,将理解记录在此。

信息量

试着将世界上的一些习以为常的东西量化,是提高生活效率和质量的一大核心方式。和人聊天,看电影,战争…每件事中都有着信息这一抽象概念。能把这一概念量化,用数字去衡量的话,就能用科学方法提高管理利用信息的效率了。信息论就是在做这样一件事。

但是将信息量化,该怎么选择公式,要基于信息的特点:

  1. 信息量是正数(不然还能偷走信息)
  2. 信息量可以相加(比如一句话含有信息量3,另一句含有信息量2,两句话一共就含有信息量5,而不是3或7)
  3. 某件事的信息量和这件事发生的概率的关系可以用连续函数来表示(比如假设月球撞地球概率为0.000001%,我现在肚子很饿的概率为99%,那么前者对应信息量大,后者对应信息量小)
  4. 一件事情,可能的结果的数量越多,这件事含有的信息量越大(比如蒙答案时,单选题的信息量没有多选题大,因为多选题有更多的可能的选择组合)

那么对数函数y = -log(x)在底数大于1时,就能很好的符合信息的这些特性:
在这里插入图片描述

  1. 一件事发生的概率在0-1之间,x表示概率的话,-log(x)是正数
  2. 两件事分别发生的概率是ab,信息量为-log(a)-log(b),同时发生的话信息量为-log(ab) = -log(a) + -log(b)
  3. x表示概率的话,log(x)确实是连续的函数,每种概率都对应一个信息量
  4. 假设一件事有n种等可能的结果,n越大,每种结果代表的信息量-log(1/n)也越大(因为得知结果后,排除了更多的错误的答案)

信息熵

信息熵是用来衡量一件事,平均而言,能给我们带来的信息量的多少。是信息量的期望

因为现实生活中,一件事的不同结果发生的概率不同,带来的信息量也有所不同,那么对这些结果的信息量加权平均,就能估量一件事背后的信息量大小了(比如月球撞地球到了饭点肚子饿)。
请添加图片描述


信息增益

信息增益,是得知了一个信息后,信息的不确定性减少的程度。用来衡量得知的这个信息的价值。

基于上面两个概念,某件事中,一个结果的信息量,减去这件事的信息量期望,得到的就是得知这个结果后,我们所获得信息增益。

决策树中,有时就是用这个指标,来选择用来决策的特征的。


参考链接

信息熵是什么?
通俗理解信息熵
信息增益到底怎么理解呢?
封面图源

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值