Datawhale数据分析教程笔记04

数据可视化

tips:在jupyter notebook上使用matplotlib绘图,可以加上一行%matplotlib inline生成无交互的可视化图表 或 使用%matplotlib notebook形成交互式的图表
最基本的可视化图案有哪些?分别适用于那些场景?

折 线 图 折线图 线 适合可视化某个属性值随时间变化的走势
散 点 图 散点图 适合可视化因变量随自变量而变化的大致趋势
柱 状 图 柱状图 适合可视化不同状态下某一属性的数量大小
直 方 图 直方图 适合可视化数据的出现频率分布
扇 形 图 扇形图 适合可视化部分与部分、部分与整体之间的数量关系

利用plot()方法进行绘图
sex = df.groupby(['Sex','Survived'])['Survived'].count().unstack()
sex.plot(kind='bar',stacked=True)

其中kind参数选择图表类型,stacked参数设置为True可以堆叠同类数据如下图在这里插入图片描述

对课程中数据可视化可以发现

①舱位等级低的存活人数和舱位等级高的存活人数差不多,但死亡人数多得多,因此存活率很低。
②一等舱存活率大于死亡率,二等舱存活率和死亡率基本持平,三等舱死亡率远高于生存率。
③票价越低的存活人数越多,这是由于票价低的乘客基数大
④存活的人中,10岁以下的儿童存活率最高。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值