数据可视化
tips:在jupyter notebook上使用matplotlib绘图,可以加上一行%matplotlib inline生成无交互的可视化图表 或 使用%matplotlib notebook形成交互式的图表
最基本的可视化图案有哪些?分别适用于那些场景?
折
线
图
折线图
折线图 适合可视化某个属性值随时间变化的走势
散
点
图
散点图
散点图 适合可视化因变量随自变量而变化的大致趋势
柱
状
图
柱状图
柱状图 适合可视化不同状态下某一属性的数量大小
直
方
图
直方图
直方图 适合可视化数据的出现频率分布
扇
形
图
扇形图
扇形图 适合可视化部分与部分、部分与整体之间的数量关系
利用plot()方法进行绘图
sex = df.groupby(['Sex','Survived'])['Survived'].count().unstack()
sex.plot(kind='bar',stacked=True)
其中kind参数选择图表类型,stacked参数设置为True可以堆叠同类数据如下图
对课程中数据可视化可以发现
①舱位等级低的存活人数和舱位等级高的存活人数差不多,但死亡人数多得多,因此存活率很低。
②一等舱存活率大于死亡率,二等舱存活率和死亡率基本持平,三等舱死亡率远高于生存率。
③票价越低的存活人数越多,这是由于票价低的乘客基数大
④存活的人中,10岁以下的儿童存活率最高。