2018-03-05
在二次函数Y=aX^2 bx c中,a代表什么,b,c都代表什么哪些图像性质? 二次函数在图像上有什么概念和性质?
y=ax^2 bx c在数学中,二次函数(quadratic function)表示形为y=ax^2 bx c(a≠0,a、b、c为常数)的多项式函数。二次函数的图像是一条主轴平行于y轴的抛物线。 二次函数表达式ax2 bx c的定义是一个二次多项式,因为x的最高次数是2。 如果令二次函数的值等于零,则可得一个一元二次方程。该方程的解称为方程的根或函数的零点。 二次函数 - 定义与定义表达式 二次函数图像一般地,自变量x和因变量y之间存在如下关系: 一般式:y=ax^2 bx c(a≠0,a、b、c为常数),则称y为x的二次函数。 顶点式:y=a(x-h)^2 k 交...全部
y=ax^2 bx c在数学中,二次函数(quadratic function)表示形为y=ax^2 bx c(a≠0,a、b、c为常数)的多项式函数。二次函数的图像是一条主轴平行于y轴的抛物线。
二次函数表达式ax2 bx c的定义是一个二次多项式,因为x的最高次数是2。 如果令二次函数的值等于零,则可得一个一元二次方程。该方程的解称为方程的根或函数的零点。 二次函数 - 定义与定义表达式 二次函数图像一般地,自变量x和因变量y之间存在如下关系: 一般式:y=ax^2 bx c(a≠0,a、b、c为常数),则称y为x的二次函数。
顶点式:y=a(x-h)^2 k 交点式(与x轴):y=a(x-x1)(x-x2) 重要知识:(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a0,所以b/2a要小于0,所以a、b要异号 事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。
可通过对二次函数求导得到。 5。常数项c决定抛物线与y轴交点。 抛物线与y轴交于(0,c) 6。抛物线与x轴交点个数 Δ= b²-4ac>0时,抛物线与x轴有2个交点。 Δ= b²-4ac=0时,抛物线与x轴有1个交点。
Δ= b²-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b²-4ac 的值的相反数,乘上虚数i,整个式子除以2a) 当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b²/4a;在{x|x-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b²/4a}相反不变 ,a-b/2a}上是减函数;抛物线开口方向向下。
当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax² c(a≠0) 7。定义域:R 值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b²)/4a,正无穷);②[t,正无穷) 奇偶性:偶函数 周期性:无 解析式: ①y=ax² bx c[一般式] ⑴a≠0 ⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下; ⑶极值点:(-b/2a,(4ac-b²)/4a); ⑷Δ=b²-4ac, Δ>0,图象与x轴交于两点: ([-b-√Δ]/2a,0)和([-b √Δ]/2a,0); Δ=0,图象与x轴交于一点: (-b/2a,0); Δ<0,图象与x轴无交点; ②y=a(x-h)² t[配方式、顶点式] 此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b²)/4a); ③y=a(x-x1)(x-x2)[交点式、两点式] a≠0,此时,x1、x2即为函数与X轴的两个交点的横坐标,将X、Y代入即可求出解析式(一般与一元二次方程连用)。
二次函数 - 二次函数与一元二次方程 特别地,二次函数(以下称函数)y=ax² bx c, 当y=0时,二次函数为关于x的一元二次方程(以下称方程), 即ax² bx c=0 此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。 1。二次函数y=ax²,y=a(x-h)²,y=a(x-h)² k,y=ax² bx c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表: 解析式 y=ax² y=ax² K y=a(x-h)² y=a(x-h)² k y=ax² bx c 顶点坐标 (0,0) (0,K) (h,0) (h,k) (-b/2a,sqrt[4ac-b²]/4a) 对 称 轴 x=0 x=0 x=h x=h x=-b/2a 当h>0时,y=a(x-h)²的图象可由抛物线y=ax²向右平行移动h个单位得到, 当h0,k>0时,将抛物线y=ax²向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)² k的图象; 当h>0,k0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)² k的图象; 当h0时,开口向上,当a0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大。
若a0,图象与x轴交于两点A(x₁,0)和B(x₂,0),其中的x1,x2是一元二次方程ax² bx c=0 (a≠0)的两根。这两点间的距离AB=|x₂-x₁| 另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-A |(A为其中一点的横坐标) 当△=0。
图象与x轴只有一个交点; 当△0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a0(a 顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值。 6。用待定系数法求二次函数的解析式 (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式: y=ax² bx c(a≠0)。
(2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:y=a(x-h)² k(a≠0)。 (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x₂)(a≠0)。
7。二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。收起