leetcode32—最长有效括号原题链接
题意简述
给定一个只包含 ‘(’ 和 ‘)’ 的字符串,找出最长的包含有效括号的子串的长度。
示例 1:
输入: “(()”
输出: 2
解释: 最长有效括号子串为 “()”
示例 2:
输入: “)()())”
输出: 4
解释: 最长有效括号子串为 “()()”
解题分析
dp[i]:以s[i]结尾的子串包含有效括号的最长长度.
状态转移过程:
IF s[i]=='(' dp[i]=0
IF s[i]==')'
IF s[i-1-dp[i-1]]=='(' dp[i]=dp[i-1]+2+dp[i-1-dp[i-1]-1]
初始状态: dp[0] = 0 (只有一个括号,肯定为0).
演示:
( ( ) ( ( ) ( ) )
0 0 2 0 0 2 0 4 8
复杂度分析:
时间复杂度: O(n)
空间复杂度: O(n)
参考代码
class Solution {
public int longestValidParentheses(String s) {
int len = s.length();
int[] dp = new int[len];
int maxx = 0;
if(len == 0) return 0;
dp[0] = 0;
for(int i = 1; i < len; i++) {
if(s.charAt(i) == '(') {
dp[i] = 0;
continue;
}
if(i - 1 - dp[i - 1] >= 0 && s.charAt(i - 1 - dp[i - 1]) == '(') {
dp[i] = dp[i - 1] + 2;
if(i - 1 - dp[i - 1] - 1 >= 0) {
dp[i] += dp[i - 1 - dp[i - 1] - 1];
}
maxx = Math.max(maxx,dp[i]);
} else {
dp[i] = 0;
}
}
return maxx;
}
}
func longestValidParentheses(s string) int {
length := len(s)
if length == 0 {
return 0
}
var dp [100000]int
maxx := 0
for i := 1; i < length; i++ {
if s[i] == '(' {
dp[i] = 0
continue
}
if i - 1 - dp[i - 1] >= 0 && s[i - 1 - dp[i - 1]] == '(' {
dp[i] = dp[i - 1] + 2
if i - 1 - dp[i - 1] - 1 >= 0 {
dp[i] += dp[i - 1 - dp[i - 1] - 1]
}
maxx = max(maxx,dp[i])
} else {
dp[i] = 0
}
}
return maxx
}
func max(a int, b int) int {
if a > b {
return a
} else {
return b
}
}