实例分割_IRNet:弱监督实例分割

IRNet利用弱监督信息,通过Inter-pixel Relation Network改进CAM,提高实例分割的准确性。它由实例响应图和pairwise semantic affinity两部分组成,通过联合学习和特定损失函数优化。实验表明,IRNet在弱监督实例分割任务上表现优越。
摘要由CSDN通过智能技术生成

14549d97f909894767799e0f4c1fc95e.png

全名:Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations

更多论文解读的博客原文第一时间发布于我的github论文合集:

https://github.com/ming71/CV_PaperDaily​github.com

和个人博客:

chaser​ming71.github.io
93327ff65c102c7c49a91de2a7ed9588.png

欢迎关注,有想法欢迎一起讨论!私信评论均可。ming71/CV_PaperDaily欢迎关注,有想法欢迎一起讨论!私信评论均可。chaser欢迎关注,有想法欢迎一起讨论!私信评论均可。ming71/CV_PaperDaily欢迎关注,有想法欢迎一起讨论!私信评论均可。

如有markdown语法知乎显示bug不进行修改维护,请直接移步github和博客即可。文章的维护也只在git和博客进行,知乎文章除有错误外不更新。

论文发布日期:2019 [CVPR]

1. Introduction

使用分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值