极坐标t1t2几何意义_复数与几何(一) 基本几何性质及应用

首先强调,复数法只是几何证明的辅助方法,千万不能因为它而忽视了常规的几何方法.应当把重点放在几何方法上,不要被复数法搅乱思路.

一.基本知识

这里给出一些关于复数的基本知识,结论仅仅给出而不作说明.

1.复数的表示

代数形式:

称为复数
的实部,记作
称为复数
的虚部,记作

几何形式:代数形式

与复平面上的位置向量
一一对应,这称为复数的几何形式.

三角形式:设点

的极坐标为
其中
称为
的模,记作
称为
的辐角,记作
对于满足
的辐角
称其为
的辐角主值,记作
这称为复数的三角形式.

指数形式:记

这称为复数的指数形式.

efc937138ae41e95c694fd8a84c23571.png

2.复数的计算

四则运算

设复数

定义加法运算

减法运算

乘法运算

除法运算

若用指数形式:

不难证明

这个结论可推广到

个复数相乘,称为
棣莫弗(De Moivre)定理.复数的这个运算性质是以后很多论证的基础.

复数的四则运算满足和实数相同的运算律.

开方运算

设复数

次方根为

时,这
次方根均匀分布在复平面上的圆
上.

共轭复数

对复数

定义其共轭复数

运算性质:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

模和辐角

运算性质:

(1)

(2)

(3)

(4)

(5)

(6)

(三角不等式);

(7)

(8)

(9)

二.复数运算的几何意义

1.四则运算和共轭的几何意义(略)

2.一些常用的几何意义

设复数

在复平面上对应的点分别为

(1)

表示
之间的距离;

(2)满足

的复数
对应的点的轨迹为线段
的垂直平分线;

(3)满足

的复数
对应的点的轨迹为以
为圆心,
为半径的圆;

(4)满足

的复数
对应的点的轨迹为一条射线,方向为实正半轴逆时针旋转

(5)复数方程组的解是方程在复平面上对应的轨迹交点对应的复数.

以下我们用标记点的字母直接表示点对应的复数.

例1 如图,在

三边上向外作
使得
求证:

3285d64748477cd24b367f5e4ea4691e.png

证明:以

为原点建立复平面,不妨设

因为

所以

整理得

得证.

这大概是复数法必做的经典例题之一了.如果用纯几何方法,思路并不清晰,转化比较困难,相比之下,复数法就显得清晰自然,不可能做不出来.

3,常用结论

对于复平面上的向量

将它平移使得与
原点
重合,得到的向量
称为向量
的位置向量.显然
称为向量
对应的复数,记作
于是向量与复数在加减运算中地位相同(可以互相替换而不改变几何意义).

(1)平面四边形

是平行四边形的充要条件是

(2)(复数形式的定比分点公式)设复平面上的直线

上有一点
满足

例2 如图,四边形

中,
分别是
的中点,直线
分别与直线
交于点
求证:

2d704bbb70806e97e959e565beb60a99.png

证明:不妨设

所以

又因为

所以

因此

证毕.

本例也是一个经典的几何结构.

(3)设向量

对应的复数分别为

(4)设直线

过点
其方向向量对应的复数为
是平面上的线段,
是平面上的某点,则
在直线
上的投影长为

到直线
的距离为

以上两个性质只需将复数运算转化为向量运算即可证明.

(5)复平面上的三点

逆时针排列,则
是正三角形的充要条件是
(顺时针排列则改写为
)

这里

要证明这个结论,只需注意到

并利用三次单位根的性质即可.

推论:

是正三角形的充要条件是

这是因为

例3(爱尔可斯定理1) 若

都是正三角形(顶点逆时针排列),则由线段
的中点
构成的三角形也是正三角形.

证明:由性质(5)得

所以

为正三角形.

不难把结论推广:只要

即可推出
为正三角形.有时复数法不仅能自然地证明结论,还可以轻松地推广或得出其他有趣的结论(这通常很不容易).
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值