首先强调,复数法只是几何证明的辅助方法,千万不能因为它而忽视了常规的几何方法.应当把重点放在几何方法上,不要被复数法搅乱思路.
一.基本知识
这里给出一些关于复数的基本知识,结论仅仅给出而不作说明.
1.复数的表示
代数形式:
几何形式:代数形式
三角形式:设点
指数形式:记
2.复数的计算
四则运算
设复数
定义加法运算
减法运算
乘法运算
除法运算
若用指数形式:
不难证明
这个结论可推广到
复数的四则运算满足和实数相同的运算律.
开方运算
设复数
共轭复数
对复数
运算性质:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
模和辐角
运算性质:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
二.复数运算的几何意义
1.四则运算和共轭的几何意义(略)
2.一些常用的几何意义
设复数
(1)
(2)满足
(3)满足
(4)满足
(5)复数方程组的解是方程在复平面上对应的轨迹交点对应的复数.
以下我们用标记点的字母直接表示点对应的复数.
例1 如图,在
证明:以
因为
所以
整理得
故
这大概是复数法必做的经典例题之一了.如果用纯几何方法,思路并不清晰,转化比较困难,相比之下,复数法就显得清晰自然,不可能做不出来.
3,常用结论
对于复平面上的向量
(1)平面四边形
(2)(复数形式的定比分点公式)设复平面上的直线
例2 如图,四边形
证明:不妨设
所以
又因为
但
因此
本例也是一个经典的几何结构.
(3)设向量
(4)设直线
点
以上两个性质只需将复数运算转化为向量运算即可证明.
(5)复平面上的三点
这里
要证明这个结论,只需注意到
推论:
这是因为
例3(爱尔可斯定理1) 若
证明:由性质(5)得
所以
故
不难把结论推广:只要