双目标帕累托优化_多目标优化(八): 多任务之连续帕累托解

本文介绍了一种高效地构建连续帕累托前沿的方法,包括离散帕累托求解和连续帕累托解构建两个步骤。通过梯度下降等算法求解帕累托平稳点,并利用Krylov子空间方法构建连续帕累托前沿。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

八. 连续帕累托解

参考文献:Ma, Pingchuan, Tao Du, and Wojciech Matusik. "Efficient Continuous Pareto Exploration in Multi-Task Learning." arXiv preprint arXiv:2006.16434 (2020).

1. 主要思想

前面我们介绍了单个帕累托解和多个帕累托的求解方法,接下来我们介绍一种能够输出局部连续帕累托解,进一步构建帕累托前沿(Pareto Front)的方法[11]。分如下的两步:

  • 离散帕累托求解(本文第4部分): 给定初始点,在求出一个帕累托平稳点后,从过点的平滑曲线切线出发,进行次搜索:计算搜索方向,扩展出平稳点;
  • 连续帕累托解(前沿)构建(本文第5部分):由初始点及 扩展出的平稳点集,构建出连续帕累托前沿。

为表述方便,这里引用论文中关于多任务学习的定义:

设光滑,

2. 预备知识:Krylov子空间[12]

这一节内容参考潘建瑜老师《线性方程组迭代方法》课程,第四讲 《Krylov 子空间方法 》[12]

大规模稀疏线性方程组 求解的首选方法是Krylov 子空间方法,其基本思想是在一个维数较小的子空间  中寻找近似解.

Krylov 子空间定义:设 ,  ,我们称

是由 和  生成的 Krylov 子空间, 通常简记为 。Krylov 子空间有如下的3个性质:

  • Krylov 子空间嵌套性:;
  • 的维数不超过m;
  • 为次数小于m的多项式。

简单来说,通过求解Krylov 子空间的解来近似原始线性方程组的解。

4f14c31cd5bc8943ef072988336b2542.png

3. 基本概念

定义1:帕累托平稳点(Pareto Stationary) : 设连续可微,点称为帕累托平稳点,如果存在, 使得下式成立:

引理2 :帕累托点都是帕累托平稳点。

引理3 :设是光滑且是帕累托点,是过点的曲线:

则存在 使得:

其中,为切线

上式表明,算子将点处的切向量变换为由扩张成的子空间(Krylov子空间)的向量。 

115587553ff2be14496a1c8a99cce2a4.png

4. 离散帕累托求解

给定初始点,光滑,可以从如下三步来获取连续帕累托解:

  • 求解帕累托平稳点: 从初始点出发,通过梯度下降的方法求解帕累托平稳点
  • 扩展帕累托平稳点:在点处光滑,如果帕累托前沿存在,则在点处的某个邻域内存在着帕累托平稳点。由此出发,可以求得一系列的帕累托平稳点;
  • 将上述的平稳点所在的局部帕累托前沿进行连接合并,扩充成更大的连续帕累托前沿。
  • f1f4ac799c59f83a958df6d02ff1c6b9.png

我们先来看下如何获取一系列的帕累托平稳点。

4.1 梯度求解方法

这里可以通过前面介绍的梯度求解算法,参考笔者往期文章:

多目标优化(四): 梯度下降算法

多目标优化(七): 多任务之多个帕累托解

4.2 一阶方法扩张

通过梯度求解方法求解出帕累托平稳点后,可以基于该点扩展出局部帕累托集(目标函数光滑)。这一过程可以分解为两步:

  • 1).计算:计算式中的;
  • 2).求解搜索方向: 估计梯度迭代的搜索方向。

有了搜索方向,可以通过如下更新公式求解:

我们先来看第一步。

1).计算

计算可以归结为求解如下的约束问题:

上述问题规模为,量级较小,可以很方便的求解出来。

2).求解搜索方向

求解得到后,由引理3,我们可以给出待求解的线性方程组:

其中为待求解的变量。上述问题求解有两个难点:

  • 不一定是帕累托平稳点
  • 问题的复杂度是 ,当n非常大时,求解起来非常困难。

为此引入校正向量(correction vector),将改写为:

式引入了校正向量(correction vector) ,用近似,将会是帕累托平稳点。

引理4:设是问题的解,则问题的解是:

在计算出、帕累托平稳点、校正向量,可以计算出。现在考虑如下的稀疏线性方程组:

为随机生成的向量,为待求解的变量。式可以通过krylov子空间,MINERS方法进行求解。详细MINERS算法可以参考潘建瑜老师《线性方程组迭代方法》课程,第四讲 《Krylov 子空间方法 》[12]

我们来看下寻找离散帕累托解集合的求解算法,如下图所示:

abc56e52fe1ddd4c847938a7b17431f3.png

随机初始化网络,输出N个帕累托平稳网络。

  • 输入:随机初始化网络
    • 生成点的个搜索方向;由个搜索方向扩展出个子网络;
    • 更新子网络节点:;
    • 输出帕累托平稳点。
  • 输出:N个帕累托平稳网络

5. 连续帕累托解(前沿)构建

通过前面的Algorithm 1求解出来N个帕累托平稳网络(父节点及K个子网络);接下来介绍如何由离散的帕累托点合并成更大的连续帕累托前沿(Front)。

给定及其对应的K个子节点,定义连续变量 以及搜索方向:

点处的局部帕累托集可以通过下式进行构建:

是由点及对应的K个子节点构成的凸包;切平面中切向量的线性组合仍然在切平面。

对于N个局部帕累托集:

可以将两两接壤处合并成一个更大的局部帕累托集合,全部合并完后,就可以生成多个的连续帕累托前沿(Front)。

8f092bbd5e2fb66197681ad91efc54a6.png

参考文献

  • [1] [贺莉,刘庆怀 著。《多目标优化理论与连续化方法》。2015-06。科学出版社 ]
  • [2] [陈宝林 著。《最优化理论与算法》(第2版)。2005-10。清华大学出版社 ]
  • [3] [KKT条件,Karush–Kuhn–Tucker conditions,https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions ]
  • [4] [约束规格,constraint qualifications ,https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions#Regularity_conditions_(or_constraint_qualifications) ]
  • [5] [S.D. Sudhoff.  Lecture 9:Multi-Objective Optimization,https://engineering.purdue.edu/~sudhoff/ee630/Lecture09.pdf ]
  • [6] [Fliege, J., Svaiter, B. Steepest descent methods for multicriteria optimization. Mathematical Methods of OR 51, 479–494 (2000). https://doi.org/10.1007/s001860000043 ]
  • [7] [Désidéri, Jean-Antoine. "Multiple-gradient descent algorithm (MGDA) for multiobjective optimization." Comptes Rendus Mathematique 350.5-6 (2012): 313-318. ]
  • [8] [ Gebken, Bennet, Sebastian Peitz, and Michael Dellnitz. A descent method for equality and inequality constrained multiobjective optimization problems. Numerical and Evolutionary Optimization. Springer, Cham, 2017.]
  • [9]  Sener, O. and Koltun, V. Multi-task learning as multi- objective optimization. In Advances in Neural Informa- tion Processing Systems, pp. 527–538, 2018.
  • [10] Lin, X., Zhen, H.-L., Li, Z., Zhang, Q.-F., and Kwong, S. Pareto multi-task learning. In Advances in Neural Information Processing Systems, pp. 12037–12047, 2019.

  • [11] Ma, Pingchuan, Tao Du, and Wojciech Matusik. "Efficient Continuous Pareto Exploration in Multi-Task Learning." arXiv preprint arXiv:2006.16434 (2020).

  • [12] 潘建瑜《线性方程组迭代方法》课程,第四讲 《Krylov 子空间方法 》http://math.ecnu.edu.cn/~jypan/Teaching/MatrixIter/lect04_Krylov_ssm.pdf

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值