前言
此博客主要介绍如何利用matlab一步一步训练caffe模型,类似使用caffe.exe 的train命令。
国际惯例,参考博客:
抱怨一下:matlab的教程是真少哇,大牛们都跑去玩Python了。。。o(╯□╰)o,开更。。。。。。。。。
【注】所有专业说法请参考caffe官网以及其它大牛博客,博主写博客可能有点白话文且没那么咬文嚼字。
一、读入模型
先去caffe主页瞄一眼。。。。。得到一个讯息:
solver = caffe.Solver('./models/bvlc_reference_caffenet/solver.prototxt');这句话干什么的呢?读模型。
尝试一下,采用大家都有的mnist 中的solver,我采用了绝对路径,读者可采用相对路径,无影响
【注】我的solver可能修改了,前面有一篇博客介绍了修改内容和原因。贴一下下载地址:
lenet_solver1.prototxt:链接:http://pan.baidu.com/s/1qXWQrhy 密码:we0e
lenet_train_test1.prototxt:链接:http://pan.baidu.com/s/1miawrxQ 密码:ghxt
均值文件:链接:http://pan.baidu.com/s/1miFDNHe 密码:48az
下面用到的mnist_data:链接:http://pan.baidu.com/s/1bp62Enl 密码:royk
Google一下,感觉可能会有两个原因导致matlab未响应:一是dll没有链接到,就跟很多人出现caffe.set_mode_gpu()会直接未响应一样;二是prototxt内部错误。我不会说我折腾了一下午这个问题。
排除第一种情况,因为目前为止,使用caffe都是比较顺利的,dll问题可能性不大。那就是prototxt 路径问题了,去看prototxt是什么情况
net: "examples/mnist/lenet_train_test1.prototxt"
snapshot_prefix: "examples/mnist/lenet"与路径有关的两句话,我们的matlab程序文件夹是E:\CaffeDev\caffe-master\matlab\demo,与这个路径相差十万八千里。保险起见,我的解决方法是把mnist训练需要的东西全都复制丢到matlab程序文件夹了。如下:
mnist_data文件夹存的是mnist数据集的lmdb文件以及lenet.prototxt,不想动手制作的去上面下载,想动手自己做的,前面有博客介绍。
移动完毕,那就得改改prototxt里面的路径了:
lenet_solver1.prototxt
# The train/test net protocol buffer definition
net: "lenet_train_test1.prototxt"
# test_iter specifies how many forward passes the test should carry out.
# In the case of MNIST, we have test batch size 100 and 100 test iterations,
# covering the full 10,000 testing images.
test_iter: 100
# Carry out testing every 500 training iterations.
test_interval: 500
# The base learning rate, momentum and the weight decay of the network.
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
# The learning rate policy
lr_policy: "inv"
gamma: 0.0001
power: 0.75
# Display every 100 iterations
display: 1
# The maximum number of iterations
max_iter: 10000
# snapshot intermediate results
snapshot: 5000
snapshot_prefix: "mnist_data/lenet"
# solver mode: CPU or GPU
solver_mode: CPUlenet_train_test1.prototxt 被修改部分
name: "LeNet"
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mean_file: "mean.binaryproto"
scale: 0.00390625
}
data_param {
source: "mnist_data/mnist_train_lmdb"
batch_size: 64
backend: LMDB
}
}
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mean_file: "mean.binaryproto"
scale: 0.00390625
}
data_param {
source: "mnist_data/mnist_test_lmdb"
batch_size: 100
backend: LMDB
}
}
再进行下一步操作之前,最好用bat测试一下是否能读取到这个prototxt并训练,排除这一步错误才能进行下步工作。 接下来再去读取模型:
addpath('..')
caffe.reset_all
solver = caffe.Solver('lenet_solver1.prototxt');显示一下:
>> solver
solver =
Solver with properties:
net: [1x1 caffe.Net]
test_nets: [1x1 caffe.Net]
二、训练模型
2.1、一次性训练模型
solver.solve();这里会有一个幌子,你会发现运行以后matlab跟待机一样,啥输出都没。我还以为出错,分析了一下上面solver读取的两个net:
模型的输入竟然是empty的,难道我们的lmdb数据没有读进去,然后尝试了leveldb,以及各种改leveldb的路径,比如添加“./”之类的,都不行。这时候便想到了一种可能性,模型载入是不读取数据的,只有在运行时候读取数据,但是solver的solve方法是一次性训练模型,没有任何输出,matlab可能已经在训练模型了。为了验证此想法,run→吃饭→回来→观察,果然在下面这个路径中发现了训练好的model
snapshot_prefix: "mnist_data/lenet"
为了避免这些模型是用空数据训练的,使用mnist的classification_demo测试一下,竟然手写数字都分类正确,这样便验证了我们的想法:solver.solve()是一次性训练数据,不会附带任何输出,matlab表现会如死机了。
2.2训练模型step-by-step
依旧去官网找:
意思是我们可以用step命令设置每次训练多少次以后,可以干一下别的事情,然后再训练。
好,卡壳了,设置完毕step为1表示我们想在每一次迭代都取出loss和accuracy,但是然后呢?怎么继续训练?找了很多教程都是Python的,受次启发,以及反复看caffe的官网,发现:
net.blobs('data').set_data(data);
net.forward_prefilled();
prob = net.blobs('prob').get_data();给出的解释简单翻译一下是:
net.forward函数接受n维的输入,输出output的blob的数据
net.forward_prefilled使用的则是使用在模型中已经存在的数据继续训练,并不接受任何输入,以及提供任何输出。
看完这两个解释,思考一下,用step设置训练1次停一下,那么我们的数据是否依旧在blob中存着呢?那么就可以使用net.forward_prefilled做继续训练的工作,尝试一下:
%训练
clear
clc
addpath('..')
caffe.reset_all
solver=caffe.Solver('lenet_solver1.prototxt');
loss=[];
accuracy=[];
for i=1:10000
disp('.')
solver.step(1);
iter=solver.iter();
solver.net.forward_prefilled
end果然输出了一堆“.”,想法正确,接下来就是取出每次迭代的loss和accuracy了,想都不用想,用blob,为了训练快点,我切换到GPU版本的caffe-windows去了,代码如下:
%训练
clear
clc
close all
format long %设置精度,caffe的损失貌似精度在小数点后面好几位
addpath('..')
caffe.reset_all%重设网络,否则载入两个网络会卡住
solver=caffe.Solver('lenet_solver1.prototxt'); %载入网络
loss=[];%记录相邻两个loss
accuracy=[];%记录相邻两个accuracy
hold on%画图用的
accuracy_init=0;
loss_init=0;
for i=1:10000
solver.step(1);%每迭代一次就取一次loss和accuracy
iter=solver.iter();
solver.net.forward_prefilled %每次取完loss和accuracy就进行下一次迭代训练
loss=solver.net.blobs('loss').get_data();%取训练集的loss
accuracy=solver.test_nets.blobs('accuracy').get_data();%取验证集的accuracy
%画loss折线图
x=[i-1,i];
y=[loss_init loss];
plot(x,y,'r-')
drawnow
loss_init=loss;
end
接下来我们便得到了实时的曲线图,每次迭代都有一个loss显示在折线图中。
附:读取日志文件的loss
如果使用的是dos窗口caffe -train命令训练,那么提取loss和accuracy就需要定向到caffe默认的日志文件去,找的方法很简单
按时间排序,找到最近的以caffe.exe开头的文件名称,用notepad++打开可以看到日志信息:
读文件的方法有很多,我用正则表达式去匹配loss信息:
先将这个记录log的文件拷贝出来,
%my loss
clear;
clc;
close all;
train_log_file = 'caffe.exe.BINGO-PC.Bingo.log.INFO.20160924-193528.13464' ;
train_interval = 100 ;
test_interval = 500 ;
[~, string_output] = dos(['type ' , train_log_file ]) ;
pat='1 = .*? loss';
o1=regexp(string_output,pat,'start');%用'start'参数指定输出o1为匹配正则表达式的子串的起始位置
o2=regexp(string_output,pat,'end');%用'start'参数指定输出o1为匹配正则表达式的子串的结束位置
o3=regexp(string_output,pat,'match');%用'match'参数指定输出o2为匹配正则表达式的子串
loss=zeros(1,size(o1,2));
for i=1:size(o1,2)
loss(i)=str2num(string_output(o1(i)+4:o2(i)-5));
end
plot(loss)