python distance_textdistance

TextDistance

TextDistance

-- python library for comparing distance between two or more

sequences by many algorithms.

Features:

30+ algorithms

Pure python implementation

Simple usage

More than two sequences comparing

Some algorithms have more than one implementation in one class.

Optional numpy usage for maximum speed.

Algorithms

Edit based

Algorithm

Class

Functions

Hamming

hamming

MLIPNS

|

Mlipns

|

mlipns

Levenshtein

|

Levenshtein

|

levenshtein

Damerau-

Levenshtein

|

DamerauLevenshtein

|

damerau_levenshtein

Jaro-Winkler

|

JaroWinkler

|

jaro_winkler

,

jaro

Strcmp95

|

StrCmp95

|

strcmp95

Needleman-

Wunsch

|

NeedlemanWunsch

|

needleman_wunsch

Gotoh

|

Gotoh

|

gotoh

Smith-

Waterman

|

SmithWaterman

|

smith_waterman

Token based

Algorithm

Class

Functions

jaccard

Sørensen–Dice

coefficient

|

Sorensen

|

sorensen

,

sorensen_dice

,

dice

Tversky index

|

Tversky

|

tversky

Overlap coefficient

|

Overlap

|

overlap

Tanimoto

distance

|

Tanimoto

|

tanimoto

Cosine similarity

|

Cosine

|

cosine

Monge-Elkan

|

MongeElkan

|

monge_elkan

Bag

distance

|

Bag

|

bag

Sequence based

Algorithm | Class | Functions

---|---|---

longest common subsequence

similarity

|

LCSSeq

|

lcsseq

longest common substring

similarity

|

LCSStr

|

lcsstr

Ratcliff-Obershelp

similarity

|

RatcliffObershelp

|

ratcliff_obershelp

Compression based

Normalized compression

distance

with different compression algorithms.

Classic compression algorithms:

Algorithm

Class

Function

ArithNCD

arith_ncd

RLENCD

rle_ncd

BWT RLE

|

BWTRLENCD

|

bwtrle_ncd

Normal compression algorithms:

Algorithm

Class

Function

Square Root

SqrtNCD

sqrt_ncd

EntropyNCD

entropy_ncd

Work in progress algorithms that compare two strings as array of bits:

Algorithm

Class

Function

BZ2NCD

bz2_ncd

LZMANCD

lzma_ncd

ZLIBNCD

zlib_ncd

See

blog post

for more details about

NCD.

Phonetic

Algorithm

Class

Functions

MRA

mra

Editex

editex

Simple

Algorithm

Class

Functions

Prefix similarity

Prefix

prefix

Postfix similarity

Postfix

postfix

Length distance

Length

length

Identity similarity

Identity

identity

Matrix similarity

Matrix

matrix

Installation

Stable

Only pure python implementation:

pip install textdistance

With extra libraries for maximum speed:

pip install textdistance[extras]

With all libraries (required for benchmarking and testing):

pip install textdistance[benchmark]

With algorithm specific extras:

pip install textdistance[Hamming]

Algorithms with available extras:

DamerauLevenshtein

,

Hamming

,

Jaro

,

JaroWinkler

,

Levenshtein

.

Dev

Via pip:

pip install -e git+https://github.com/orsinium/textdistance.git#egg=textdistance

Or clone repo and install with some extras:

git clone https://github.com/orsinium/textdistance.git

pip install -e .[benchmark]

Usage

All algorithms have 2 interfaces:

Class with algorithm-specific params for customizing.

Class instance with default params for quick and simple usage.

All algorithms have some common methods:

.distance(*sequences)

-- calculate distance between sequences.

.similarity(*sequences)

-- calculate similarity for sequences.

.maximum(*sequences)

-- maximum possible value for distance and similarity. For any sequence:

distance + similarity == maximum

.

.normalized_distance(*sequences)

-- normalized distance between sequences. The return value is a float between 0 and 1, where 0 means equal, and 1 totally different.

.normalized_similarity(*sequences)

-- normalized similarity for sequences. The return value is a float between 0 and 1, where 0 means totally different, and 1 equal.

Most common init arguments:

qval

-- q-value for split sequences into q-grams. Possible values:

1 (default) -- compare sequences by chars.

2 or more -- transform sequences to q-grams.

None -- split sequences by words.

as_set

-- for token-based algorithms:

True --

t

and

ttt

is equal.

False (default) --

t

and

ttt

is different.

Example

import textdistance

textdistance.hamming('test', 'text')

# 1

textdistance.hamming.distance('test', 'text')

# 1

textdistance.hamming.similarity('test', 'text')

# 3

textdistance.hamming.normalized_distance('test', 'text')

# 0.25

textdistance.hamming.normalized_similarity('test', 'text')

# 0.75

textdistance.Hamming(qval=2).distance('test', 'text')

# 2

Any other algorithms have same interface.

Extra libraries

For main algorithms textdistance try to call known external libraries (fastest

first) if available (installed in your system) and possible (this

implementation can compare this type of sequences). Install textdistance with

extras for this feature.

You can disable this by passing

external=False

argument on init:

import textdistance

hamming = textdistance.Hamming(external=False)

hamming('text', 'testit')

# 3

Supported libraries:

Algorithms:

DamerauLevenshtein

Hamming

Jaro

JaroWinkler

Levenshtein

Benchmarks

Without extras installation:

algorithm

library

function

time

DamerauLevenshtein

jellyfish

damerau

levenshtein

distance

0.00965294

DamerauLevenshtein

pyxdameraulevenshtein

damerau

levenshtein

distance

0.151378

DamerauLevenshtein | pylev | damerau

levenshtein | 0.766461

DamerauLevenshtein |

textdistance

| DamerauLevenshtein | 4.13463

DamerauLevenshtein | abydos | damerau

levenshtein | 4.3831

Hamming | Levenshtein | hamming | 0.0014428

Hamming | jellyfish | hamming

distance | 0.00240262

Hamming | distance | hamming | 0.036253

Hamming | abydos | hamming | 0.0383933

Hamming |

textdistance

| Hamming | 0.176781

Jaro | Levenshtein | jaro | 0.00313561

Jaro | jellyfish | jaro

distance | 0.0051885

Jaro | py

stringmatching | jaro | 0.180628

Jaro |

textdistance

| Jaro | 0.278917

JaroWinkler | Levenshtein | jaro

winkler | 0.00319735

JaroWinkler | jellyfish | jaro

winkler | 0.00540443

JaroWinkler |

textdistance

| JaroWinkler | 0.289626

Levenshtein | Levenshtein | distance | 0.00414404

Levenshtein | jellyfish | levenshtein

distance | 0.00601647

Levenshtein | py_stringmatching | levenshtein | 0.252901

Levenshtein | pylev | levenshtein | 0.569182

Levenshtein | distance | levenshtein | 1.15726

Levenshtein | abydos | levenshtein | 3.68451

Levenshtein |

textdistance

| Levenshtein | 8.63674

Total: 24 libs.

Yeah, so slow. Use TextDistance on production only with extras.

Textdistance use benchmark's results for algorithm's optimization and try to

call fastest external lib first (if possible).

You can run benchmark manually on your system:

pip install textdistance[benchmark]

python3 -m textdistance.benchmark

TextDistance show benchmarks results table for your system and save libraries

priorities into

libraries.json

file in TextDistance's folder. This file will

be used by textdistance for calling fastest algorithm implementation. Default

libraries.json

already included in package.

Test

You can run tests via

tox

:

sudo pip3 install tox

tox

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值