tensorboard安装_pytorch的tensorboard学习

本文介绍了TensorBoard在PyTorch中的安装与使用,包括如何创建SummaryWriter,记录标量、直方图、图片数据,以及网络结构图。通过TensorBoard可以直观地可视化模型的训练过程和各种指标。
摘要由CSDN通过智能技术生成

4d5b1262527e90f4e186f4c12f849880.png

一、tensorboard介绍

我装的pytorch的版本更新到1.6,我用conda一键命令安装pytorch会自动装好tensorboard。如果电脑没有装,可以通过pip install tensorboard进行安装。

使用tensorboard我们可以将模型和一些指标记录到一个日志文件中,以便在TensorBoard UI中进行可视化。pytorch模型和张量支持标量、图像、直方图、graphs以及嵌入可视化。

二、tensorboard的使用

2.1创建一个SummaryWriter

常用的两种初始化SummaryWriter的方法:

writer1 = SummaryWriter('runs/exp')

自己传一个路径参数,运行命令后那么在runs/exp目录下有一个event.out.tfevents的文件(日志文件)。切记:
如果这条命令运行多次,则会在runs/exp目录下产生多个文件,然后使用tensorboard --logdir=runs/exp可视化会出现混乱。所以一个目录下只能放一个event.out.tfevents文件

writer2 = SummaryWriter()

没有传递参数。默认路径为runs/日期时间,会在runs/日期时间目录下产生一个event.out.tfevents的文件。这条命令运行多次,则会在runs目录下产生多个命名为'日期时间'的目录,每个'日期时间'的目录都只会有一个event.out.tfevents文件。

有了这些日志文件,可以通过在终端中输入tensorboard --logdir=<your_log_dir>,然后打开网址http://localhost:6007/就可以看到可视化的图片了。

其中的<your_log_dir>既可以是单个 run 的路径,如上面 writer1 生成的runs/exp;也可以是多个 run 的父目录,如runs/下面可能会有很多的子文件夹,每个文件夹都代表了一次实验,我们令--logdir=runs/就可以在 tensorboard 可视化界面中方便地横向比较runs/下不同次实验所得数据的差异

一个实验可以记录很多信息。 为了避免UI混乱并更好地进行结果的展示,我们可以通过对图进行分层命名来对图进行分组。 例如,“Loss/train”和“Loss/test”将被分组在一起,而“Accuracy/train”和“Accuracy/test”将在TensorBoard界面中分别分组。

from torch.utils.tensorboard import SummaryWriter
import numpy as np

writer = SummaryWriter()

for n_iter in range(100):
    writer.add_scalar('Loss/train', np.random.random(), n_iter)
    writer.add_scalar('Loss/test', np.random.random(), n_iter)
    writer.add_scalar('Accuracy/train', np.random.random(), n_iter)
    writer.add_scalar('Accuracy/test', np.random.random(), n_iter)

3f444dc16031867663075246497a8edb.png

2.2 添加标量数据到summary

add_scalar(tag,scalar_value,global_step=None,walltime=None)

功能:在一个图表中记录一个标量的变化,常用于Loss和Accuracy曲线的记录

参数:

tag(string):图的标题

scalar_value(float or string/blobname):用于保存的值,曲线图的y坐标

global_step(int):记录的训练全局步数。曲线图的x坐标

add_scalars(main_tag,tag_scalar_dict,global_step=None,walltime=None)

功能:在一个图表中记录多个标量的变化,常用于对比。如trainLoss和validLoss的比较等。

参数:

main_tag(string):图标签的父名称

tag_scalar_dict(dict):字典的key是变量的tag,相当于标签的子名称,value是变量的值

global_step(int):记录的训练全局步数。曲线图的x坐标

举例说明:

from torch.utils.tensorboard import SummaryWriter
import numpy as np
writer = SummaryWriter()
r = 5
for i in range(100):
    writer.add_scalars('run_14h', {'xsinx':i*np.sin(i/r),
                                    'xcosx':i*np.cos(i/r),
                                    'tanx': np.tan(i/r)}, i)
writer.close()

7daf33c515fce5c3d01076e83bfe12c9.png

最终生成三个文件夹,文件夹的名字由父名称和子名称组成的

8205f20a41de9597fb6824b947036b89.png

2.3添加直方图数据到summary

add_histogram(tag,values,global_step=None,bins='tensorflow',walltime=None,max_bins=None)

功能:绘制直方图和多分位数折线图,常用于监测权重值和梯度的分布变化情况,便于诊断网络更新是否正确

参数:

tag(string):图的标题

values(torch.Tensor,numpy.array, orstring/blobname):用于建立直方图的值

global_step(int):记录的训练全局步数。

bins(string) – One of {‘tensorflow’,’auto’, ‘fd’, …}.决定如何取bins,默认为‘tensorflow’

举例说明:

from torch.utils.tensorboard import SummaryWriter
import numpy as np
writer = SummaryWriter()
for i in range(10):
    x = np.random.random(1000)
    print(x)
    writer.add_histogram('distribution centers', x , i)
writer.close()

9590f0af9dfd6132e748bb6eaa315f2c.png
纵坐标为训练步数,横坐标是变量大小,每一条曲线代表每一个训练步数下变量分布情况

e9654bd974948c55d14ae274a064d987.png
横坐标是训练步数,从上到下,有9条曲线,分别对应[max,93%,84%,69%,50%,31%,16%,7%,min]分位数

2.4 添加图片数据到summary

add_image(tag,img_tensor,global_step=None,walltime=None,dataformats='CHW')

功能:

绘制图片,可用于检查模型的输入,监测feature map的变化,或者观察weights。

参数:

tag(string):图的标题

img_tensor(torch.Tensor,numpy.array, orstring/blobname):需要可视化的图片数据

global_step(int):记录的训练全局步数.

dataformats:数据格式默认是CHW其他格式有'HWC'和'HW'

from torch.utils.tensorboard import SummaryWriter
import numpy as np
img = np.zeros((3, 100, 100))
img[0] = np.arange(0, 10000).reshape(100, 100) / 10000
img[1] = 1 - np.arange(0, 10000).reshape(100, 100) / 10000

img_HWC = np.zeros((100, 100, 3))
img_HWC[:, :, 0] = np.arange(0, 10000).reshape(100, 100) / 10000
img_HWC[:, :, 1] = 1 - np.arange(0, 10000).reshape(100, 100) / 10000

writer = SummaryWriter()
writer.add_image('my_image', img, 100)

# If you have non-default dimension setting, set the dataformats argument.
writer.add_image('my_image_HWC', img_HWC, 100, dataformats='HWC')
writer.close()

adf231e61b3093880cd6faac5ff99872.png

当需要对一个batch大小的图片可视化的时候,要借助下面函数将一组图片拼接成一张图片,便于可视化。

torchvision.utils.makegrid(tensor,nrow=8,padding=2,normalize=False,range=Nonescale_each=Falsepad_value = 0)

tensor(Tensor or list):需要可视化的数据,shape:(batch, C, H,W)

padding(int):每张图片之间的间隔,默认为2

nrow(int):一行显示几张图,默认为8

normalize(bool):是否进行归一化至[0,1]

range(tuple):设置归一化的min和max,如不设置,默认从tensor中找max和min。

scale_each(bool):每张图片是否单独进行归一化,还是选择所有的图片数据的min和max归一化

pad_value(float):填充部分的像素值,默认为0,填充黑色。

add_images(tag,img_tensor,global_step=None,walltime=None,dataformats='NCHW')

功能:其实和上面的一样,添加一个batch大小的数据给summary

参数:

tag(string):图的标题

img_tensor(torch.Tensor,numpy.array, orstring/blobname)需要可视化的图片数据,有四个维度。

global_step(int):记录的训练全局步数.

dataformats:数据格式默认是'NCHW'其他格式有'NHWC'

from torch.utils.tensorboard import SummaryWriter
import numpy as np

img_batch = np.zeros((16, 3, 100, 100))
for i in range(16):
    img_batch[i, 0] = np.arange(0, 10000).reshape(100, 100) / 10000 / 16 * i
    img_batch[i, 1] = (1 - np.arange(0, 10000).reshape(100, 100) / 10000) / 16 * i

writer = SummaryWriter()
writer.add_images('my_image_batch', img_batch, 0)
writer.close()

ee2e93c2fd0954ad94ed358e0edc34cb.png

2.4 添加网络结构图到summary

add_graph(model,input_to_model=None,verbose=False)

功能:绘制网络结构拓扑图

参数:

model(torch.nn.Module):模型实例

input_to_model(torch.Tensororlist of torch.Tensor):模型的输入数据,可以选择一个随机数,只要符合shape就可以了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值