当一个序列满足对于任意的前 项和都满足不小于_时间序列的预处理02

Wold分解定理

Wold分解定理的产生背景

1938年, H.Wold在他的博士论文“A Study in the Analysis of Stationary Time Series” 中提出了著名的平稳序列分解定理。 这个定理是平稳时间序列分析的理论基石。

Wold分解定理的内容

对于任意一个离散平稳时间序列

, 它都可以分解为两个不相关的平稳序列之和, 其中一个为确定性的 (deterministic), 另一个为随机性的 (stochastic),不妨记作

131ab6647dc0f7f2d6888485f2066eee.png

式中:

为确定性平稳序列,
为随机性平稳序列

Wold分解定理中确定性序列的性质

确定性序列

的真实生成机制可以是任意方式。换言之
的真实波动可以是时间的任意函数(前提是保证序列的平稳性)。

Wold证明不管

的生成机制是怎样的,它都可以等价表达为历史序列值的线性函数

18f26ff80ef38eab54bb4584924dc9f4.png

所以,Wold分解定理中确定性序列

的性质是:序列的当期波动可以由其历史序列值解读的部分。

Wold分解定理中,随机序列

代表了不能由序列的历史信息解读的随机波动部分

Wold证明这部分信息可以等价表达为

d842fcf3fd35d6d10c565911b6e3e839.png

式中:

称为新息过程(innovation process),是每个时期加入的新的随机信息。它们相互独立,不可预测,通常假定
。且有

f4732a4611d8ee8d6a3fdcfd90b6e4a3.png

所以,Wold分解定理中随机性序列

的性质是:序列的当期波动不可以由其历史序列值解读的部分。

波动序列的方差

对任意平稳序列

而言,令
关于q期历史序列值做线性回归

3a42234ea5c2997465827acb1186d858.png

式中

为回归残差序列,不妨记该序列的方差为

随着的增大单调非增,且

的大小可以衡量历史信息对现时值的预测精度。
越小,说明基于q期历史信息对未来的预测精度越高;
越大,则说明序列随机性很大,q期历史信息对未来的预测精度很差。
  • 如果

c6d04175b0ecd292a0f4ae4def23cd98.png

,说明序列的历史信息几乎可以完全预测未来的波动,这时称为确定性序列。

  • 如果

07c09ccaa40599f1977fd18ae71a00ca.png

说明序列的历史信息对预测未来波动完全没有作用,这时称为纯随机序列。

  • 绝大多数序列是介于确定性序列和纯随机序列中间,即

f194a2d14b48f163478bce37e68968cf.png

,这时称为随机序列。

平稳序列的解

任何时间序列都是时间的函数,即任何时间序列

都可以表达为

3b6512d838e5edf7a92bfafac4cc00ae.png

式中,

为某个特定函数。

对于随机序列

而言,
的函数表达式我们通常是不知道的,一旦
的函数表达式确定了,那么序列
在任意时刻的序列值也就知道了。所以
的函数表达式也称为序列 的解。

在时间序列分析里,我们常常使用线性差分方程来得到序列的解。

差分的定义

相距一期的两个序列值之间的减法运算称为一阶差分,记

的一阶差分,一阶差分方程为
的线性函数

8e1844f7ee1897ee848f3d86ac788374.png

对一阶差分后序列再进行一次差分称为二阶差分。记

的二阶差分,二阶差分方程为
的线性函数

27dfa1e89b17728ff73a3685cacaa286.png

以此递推,我们可以给出任意p阶差分的定义:

bd049718bbd5dd24745b3ef5e4d33e7d.png

也可以推导出阶差分方程一定是

的线性函数。

线性差分方程的定义

定义:称具有如下形式的方程为序列

的p阶线性差分方程

30e9ab2052e699be5ef6c58e4a206377.png

式中,

为实数;
为t的某个已知函数。

特别地,当

时,如下差分方程称为p阶齐次线性差分方程

793724d84869ed8a89a99bc4b4860f68.png

根据Wold分解定理,任何一个平稳序列

0303073cdfbb776ff689a2175c6eea92.png

,都可以视为一个线性差分方程

齐次线性差分方程的解

齐次线性差分方程的求解要借助它的特征方程和特征根。

特征方程的定义:p阶齐次线性差分方程的特征方程为

798bea545afd909d087288d90014c486.png

特征根的定义:特征方程是一个一元p次线性方程,它应该有p个非零根,我们把特征方程的非零根称为特征根。p个特征根不妨记作

2c94be9ae22046bd2c8092f5f906aa2c.png

根据差分方程理论,每个特征根的t次方,都是齐次线性差分方程的解。而且这些解的线性组合,也是齐次线性差分方程的解。即p阶齐次线性差分方程的通解为

5c03687a9f606a7c888d26f5bfc3f246.png

例1

验证一阶齐次线性差分方程

的通解为
为任意实数。

【解】

该差分方程的特征方程为:

特征根为:

容易验证

是该差分方程的解:

93e0b735f35b93b63b65e3baea7d531c.png

例2

验证二阶齐次线性差分方程

的通解为
为任意实数。

【解】

该差分方程的特征方程为:

ea76c11ab3aaeaab6cf1011f1cd37727.png

特征根为:

e2f5745c10dba958bd70017b85cdad34.png

容易验证

是该差分方程的解:

8b50222add7697909d71894ccbdc8466.png

非齐次线性差分方程的解

非齐次线性差分方程的解

等于齐次线性差分方程的通解
,再加上一个特解

0d3096c171bc3596376f2774050eb8dd.png

所谓特解就是使非齐次线性差分方程成立的任一值,即

091a6b453cfc80bc1cb5a24b312bcc36.png

例1续

求一阶线性差分方程

的解。

【解】

在例1中,我们求出该差分方程的通解为:

特解可以用任意方式求出,本例尝试求出该差分方程的一个常数特解

3b6218bf12a74e6f00803aa906ce5c1f.png

所以该差分方程的解为:

b17e13649c86d17821c8ede2a9e0e089.png

例2续

求二阶线性差分方程

的解。

【例2续解】

在例2中,我们求出该差分方程的通解为:

可以求出该差分方程的一个常数特解为:

05ec266c4c188396fcfa9aa14ff2ad40.png

所以该差分方程的解为:

b826633c15bff3036cfad1cf06028fc2.png

平稳序列的解

根据Wold分解定理,任意平稳序列

都可以等价表达为p阶线性差分方程

cef61afb26ef2769a7fe452ead9ac465.png

它的特征方程为

b284dedead071a86f24941fd97040f62.png

它的p个非零特征根为

,假设
为该序列的任意特解,则该平稳序列的解为

62b192b31a58c77ed679d25c0643ac3b.png

其中:

为任意实数。

平稳序列特征根的性质

平稳序列必须满足始终在均值附近波动,不能随着时间的递推而发散,即

346f54a51041e9adc65b28b111f605b9.png

为了保证上式对于任意实数都成立,就必须要求每个特征根的幂函数都不能发散,即

48fbf3c2fbace9670a570f6fe098e90c.png

进而推导出平稳序列必须满足每个特征根的绝对值都小于1

a4dc42a1a81001eae9ccaced15ef6d76.png

这意味着,如果我们能把一个平稳序列所有的特征根都求出来并且都标注在坐标轴上,那么该序列所有的特征根都应该在半径为1的单位圆内。如果序列有特征根在单位圆上或圆外,那么这个序列就是非平稳的。所以这个判断序列是否平稳的性质也称为平稳序列的单位根属性

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值