多边形的定义为什么要强调封闭图形_11.3.1 多边形讲解.ppt

11.3.1 多边形 第十一章 三角形 优 翼 课 件 导入新课 讲授新课 当堂练习 课堂小结 学练优八年级数学上(RJ) 教学课件 情境引入 学习目标 1.了解并掌握多边形及有关概念. 2.对角线条数与多边形的边数的关系.(重点) 3.理解正多边形及其有关概念.(难点) 导入新课 1.什么是三角形?有几条边,几个内角? 2.什么是三角形的外角?有几个外角? 复习引入 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.三角形有三条边,三个内角. 三角形的一边与另一边的延长线组成的角,叫做三角形的外角.一个三角形有三个外角. 讲授新课 多边形的概念 一 问题1 观察画多边形的过程,类比三角形的概念,你能说出什么是多边形吗? 我们学过三角形,类似地,在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形. 想一想:比较多边形的定义与三角形的定义,为什么要强调“在平面内”呢? 这是因为三角形中的三个顶点肯定都在同一个平面内,而四点,五点,甚至更多的点就有可能不在同一个平面内. 问题2 根据图示,类比三角形的有关概念,说明什么是多边形的边、顶点、内角、外角. 顶点 边 内角:多边形相邻两边组成的角 外角:多边形的边与它的邻边的延长线组成的角. n边形有n个顶点,n条边,n个内角,2n个外角. 多边形按它的边数可分为:三角形,四边形,五边形等等.其中三角形是最简单的多边形. 多边形的对角线 二 A B C D E 定义: 连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. 线段AC是五边形ABCDE的一条对角线,多边形的对角线通常用虚线表示. 注意 画一画:画出下列多边形的全部对角线 想一想: (1)从上面n边形的一个顶点可以作出几条对角线? (2)n边形的对角线总条数与边数n有怎样的关系? (1) (n-3) (n≥3) (2)n边形共有对角线 条(n≥3). A B C D A B C D 我们现在研究的是如图1所示的多边形,整个多边形都在这条直线的同一侧,这样的多边形是凸多边形; 如图2所示的多边形,是凹多边形,但不在现在研究的范围中.今后如果不说明,我们讲的多边形都是凸多边形. 图1 图2 正多边形 三 定义: 像正方形这样,各个角都相等,各条边都相等的多边形. 正三角形 正方形 正五边形 正六边形 想一想:下列多边形是正多边形吗?如不是,请说明为什么? (四条边都相等) (四个角都相等) 答:都不是,第一个图形不符合四个角都相等;第二个图形不符合各边都相等. 判断一个多边形是不是正多边形,各边都相等,各角都相等,两个条件必须同时具备. 注意 当堂练习 1.下列多边形中,不是凸多边形的是( ) A B C D B 2.把一张形状是多边形的纸片剪去其中一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是( ) A. 六边形 B . 五边形 C.四边形 D.三角形 A 3.九边形的对角线有( ) A.25条 B.31条 C.27条 D.30条 C 4.若从一个多边形的一个顶点出发,最多可以引10条对角线,则这是 边形. 十三 5.过八边形的一个顶点画对角线,把这个八边形分割成 个三角形. 六

<think>嗯,用户遇到了链接错误,看起来有两个问题。首先是多个main函数的定义,然后是未定义的uart相关函数引用。我需要详细解释这两个问题的原因和解决办法。 首先,多个main函数的定义。用户提供的错误信息显示,main.c的30行和bp_pid.c的55行都定义了main。在C语言中,一个程序只能有一个main函数作为入口点。所以问题出在项目中有两个文件都包含了main函数。可能的原因可能是用户不小心在两个不同的源文件中写了main,或者构建配置错误,把两个不应该一起编译的文件包含进去了。解决办法是检查这两个文件,保留一个main,另一个删除或重命名。或者,如果是库文件,可能需要调整编译配置,排除其中一个。 然后是未定义的引用,比如uart_init、uart_receive、uart_send。这些函数在链接时找不到实现。可能的原因是没有链接对应的库文件,或者这些函数的实现没有被正确编译。用户需要检查是否包含了实现这些函数的源文件(比如uart.c),并确保它们被编译并链接到项目中。如果这些函数在某个库中,需要确认链接器参数是否正确添加了该库。 接下来,我需要分步骤回答,先解释错误原因,再给出解决方法。然后提供相关的问题,比如链接错误的其他可能原因,如何避免重复定义,如何处理未定义的符号,以及入口函数的问题。 确保回答清晰,结构符合用户的要求,最后的问题要相关且有助于用户进一步理解。</think><< **问题分析及解决方案**: ### 1. 多个 `main` 函数定义错误 **错误原因**: ``` multiple definition of `main&#39; ``` - 在 C 语言中,`main` 函数是程序的唯一入口点。链接器发现两个不同的目标文件(`main.o` 和 `bp_pid.o`)都定义了 `main` 函数,导致冲突。 **解决方法**: - **检查并删除多余的 `main` 函数**:确认项目中只能有一个 `main` 函数。根据错误信息: - `main.c` 的 30 行和 `bp_pid.c` 的 55 行都定义了 `main`。 - 删除其中一个文件的 `main` 函数,或调整项目结构(例如将 `bp_pid.c` 编译为库,不包含 `main`)。 --- ### 2.定义符号错误(如 `uart_init`) **错误原因**: ``` undefined reference to `uart_init&#39; ``` - 链接器找不到 `uart_init`、`uart_receive`、`uart_send` 等函数的实现。可能原因: 1. 未包含实现这些函数的源文件(如 `uart.c`)到编译过程中。 2. 未正确链接包含这些函数的目标文件或静态库(如 `libuart.a`)。 3. 函数声明(头文件)实际实现(源文件)不一致(例如函数名拼写错误或参数不匹配)。 **解决方法**: 1. **确保源文件参编译**: - 检查构建脚本(如 Makefile),确认 `uart.c` 被编译为 `uart.o`。 - 例如,在 Makefile 中添加: ```makefile SOURCES = main.c bp_pid.c uart.c # 包含 uart.c ``` 2. **检查函数声明和实现**: - 在头文件(如 `uart.h`)中声明函数: ```c void uart_init(void); void uart_send(char data); char uart_receive(void); ``` - 在源文件 `uart.c` 中实现这些函数。 3. **验证链接参数**: - 如果 `uart` 函数在静态库中,需在链接时指定库路径和名称: ```makefile LDFLAGS += -L/path/to/lib -luart ``` --- **示例代码调整**: 假设需要保留 `main.c` 的 `main` 函数,修改 `bp_pid.c`: 1. 删除 `bp_pid.c` 中的 `main` 函数,改为其他入口(如 `void bp_pid_run(void)`)。 2. 在 `main.c` 中调用 `bp_pid_run()`: ```c #include "bp_pid.h" // 假设 bp_pid_run 在此声明 int main() { uart_init(); bp_pid_run(); return 0; } ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值