矩阵标准型的系数是特征值吗_「线性代数」根据特征值,将二次型化为标准形、规范形...

今天我们来聊一聊线性代数中的二次型化为规范形、标准形的内容,这块知识相当重要,我看了看,几乎每一年的考研数学中都会涉及到一道关于这个知识点的题目,这次的整理,不仅帮助大家整理清楚思路,也是为自己整理清楚。

首先,是谈一谈何为二次型

二次型:n个变量的二次多项式称为二次型,就是在一个多项式中,未知数的个数为任意多个,但每一项的次数都为2的多项式。

这个定义给出后,是不是很好理解,未知数的数量随便定,到那时每一项的次数都是2。

f15f469ffb4b13b916a258a895b9b953.png

如图所示,这就是二次型,可以看到,其中的每一项都是二次,大家有没有注意到我这里写出的二次型矩阵有点奇怪,没错,就是在第一行第二列的值为x1x2的系数一半,这里很重要,当你做题的时候,要用到这个概念之时,便得特别注意写对矩阵,否则若求出特征值和特征向量都会是错误的。

其次,我们来谈一谈标准形和规范形

标准形:如果二次型只有平方项,没有混合项(即混合项的系数全为零),那么我们就称二次型为标准形,也叫做平方和。

规范形:在二次型的标准形中,如果平方项的系数d只是1,-1,0,就称为是二次型的规范形。

54e11b484864bfc2e1a43618935b245d.png

给出一道实际例题帮助理解

cdc2478e551a5085e50e60421ad4c1ef.png

我们由规范形的定义可以得知:规范形是由特征值来确定的,因此我们便从特征值入手。

9a4acd63143fee56dddb5ee0b3ddecf1.png

正交变换的概念

正交变换:是线性变换的一种,从实内积空间V映射到V自身,且保证变换前后内积不变。

302c5687001d5245eb90753bad07030a.png

总结

总结一下,将二次型化为标准形、规范形,关键在于对基本知识的掌握,难度并不是特别大,要利用好特征值这个概念,对于二次型化为标准形而言,紧紧抓住正交变换不要放,求出特征值,标准形系数便是由特征值构成的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值