【线代】特征值、惯性指数、标准型、规范型的关系?等价、相似与合同?

目录

1. 两矩阵特征值相同

1.1 实对称矩阵A、B的特征值相同

2. 二次型的标准型

2.1 标准型唯一吗

2.2 标准型与秩

2.3 标准型与特征值

2.4 正交变换与特征值

2.5 两个二次型的标准型相同

3. 规范型

3.1 规范型唯一吗

3.2 规范型与标准型

3.3 规范型与合同(充要条件)

4. 等价、相似与合同


1. 两矩阵特征值相同

能确定什么?不能确定什么?(不能确定,表示不可推出,没有证据推出。)

:能确定行列式、迹相等;不能确定秩相等,不能确定A~B(相似),不能确定A合同于B。从以下几点解释。

① 因为 |A|=λ1 λ2…λn,tr(A)=λ1+λ2+…+λn,所以 |A|=|B|,tr(A)=tr(B)。

② 有特征值 λ,不表示A可以~Λ。

③ 若 A~Λ,可推出 r(A)=非0的 λ 个数。

④ 合同需要实对称矩阵(考研范围中),λ 相等并不能保证。

【反例】帮助理解:此例中,r(A)≠r(B),且都不可相似对角化,且都不是实对称矩阵(不可合同)。

1.1 实对称矩阵A、B的特征值相同

实对称矩阵一定可以对角化,所以可得A、B相似于同一个对角阵,即 A~Λ~B。又因为实对称,所以逆=转置,也合同。

《为什么实对称矩阵相似一定合同》https://zhidao.baidu.com/question/467790592.html?qbl=relate_question_0


2. 二次型的标准型

2.1 标准型唯一吗

不唯一。如果是配方法求得的,那么选取的可逆变换(配方的方式)不同,标准型结果也就不同

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值