目录
1. 两矩阵特征值相同
能确定什么?不能确定什么?(不能确定,表示不可推出,没有证据推出。)
答:能确定行列式、迹相等;不能确定秩相等,不能确定A~B(相似),不能确定A合同于B。从以下几点解释。
① 因为 |A|=λ1 λ2…λn,tr(A)=λ1+λ2+…+λn,所以 |A|=|B|,tr(A)=tr(B)。
② 有特征值 λ,不表示A可以~Λ。
③ 若 A~Λ,可推出 r(A)=非0的 λ 个数。
④ 合同需要实对称矩阵(考研范围中),λ 相等并不能保证。
【反例】帮助理解:此例中,r(A)≠r(B),且都不可相似对角化,且都不是实对称矩阵(不可合同)。
1.1 实对称矩阵A、B的特征值相同
实对称矩阵一定可以对角化,所以可得A、B相似于同一个对角阵,即 A~Λ~B。又因为实对称,所以逆=转置,也合同。
《为什么实对称矩阵相似一定合同》:https://zhidao.baidu.com/question/467790592.html?qbl=relate_question_0
2. 二次型的标准型
2.1 标准型唯一吗
不唯一。如果是配方法求得的,那么选取的可逆变换(配方的方式)不同,标准型结果也就不同。