第7章 特征值与特征向量 矩阵的标准型

  • 定义 7.1 欧氏空间 V(R) V ( R ) 的一个线性变换 σ σ 称为正交变换,如果 α,βV ∀ α , β ∈ V ,都有

    (σ(α),σ(β))=(α,β) ( σ ( α ) , σ ( β ) ) = ( α , β )
    或者
    |σ(α)|=|α| | σ ( α ) | = | α |

    原内积=像的内积
    原长度=像的长度
    <α,β>=arccos(α,β)|α||β| < α , β >= a r c c o s ( α , β ) | α | | β | <script type="math/tex" id="MathJax-Element-9874"><\alpha,\beta>=arccos \frac{(\alpha,\beta)}{|\alpha||\beta|}</script>,所以夹角不变

  • 定义 7.2 欧氏空间V(R)的正交变换 σ σ 关于V的单位正交基所对应的矩阵A称为正交矩阵

  • 定义 7.3 n阶实矩阵A称为正交矩阵,如果 ATA=E A T A = E
    正交矩阵相关性质:
    (1) A1=AT A − 1 = A T ,且 AT A T 也是正交矩阵
    (2) |A|=11 | A | = 1 或 − 1
    (3)AB是正交矩阵,则BA也是

  • Schmidt正交化

  • 定理 7.1 若A可逆,则存在正交矩阵Q和主对角为正数的上三角矩阵R,使得

    A=QR A = Q R

    通过Schmidt正交化证明

  • 定理 7.4 设线性变换 σL(V,V) σ ∈ L ( V , V ) B1={α1,,αn} B 1 = { α 1 , ⋯ , α n } B2={β1,,βn} B 2 = { β 1 , ⋯ , β n } 是线性空间V(F)的两组基,基 B1 B 1 变为基 B2 B 2 的变换矩阵是C,如果 σ σ 在基 B1 B 1 下的矩阵是A,则 σ σ 在基 B2 B 2 下的矩阵是 B=C1AC B = C − 1 A C ,称A相似于B,记作 AB A ∼ B

  • 定义 7.5 设 σ σ 是线性空间V(F)的一个线性变换,如果存在数 λ λ 和非零向量 ζV ζ ∈ V ,使得

    σ(ζ)=λζ σ ( ζ ) = λ ζ
    则称数 λ λ σ σ 的一个特征值, ζ ζ σ σ 的属于其特征值 λ λ 的特征向量。

  • 定理 7.6 若矩阵A与B相似,则它们的特征多项式相等,即

    |λEA|=|λEB| | λ E − A | = | λ E − B |

    矩阵相似可以看作同一映射在不同基下的矩阵表示。特征值肯定是相同的。

  • m个特征子空间的和是直和,即

    dim(Vλ1++Vλm)=j=1mdimVλj d i m ( V λ 1 + ⋯ + V λ m ) = ∑ j = 1 m d i m V λ j

  • 直和: W1W2 W 1 ∩ W 2 =0,则

    W1+W2={α|α=α1+α2,α1W1,α2W2} W 1 + W 2 = { α | α = α 1 + α 2 , α 1 ∈ W 1 , α 2 ∈ W 2 }
    叫做 W1W2 W 1 与 W 2 的直和

α=α1+α2 α = α 1 + α 2 唯一
交0
分解只能 0=0+0 0 = 0 + 0
dim(W1+W2)=dim(W1)+dim(W2) d i m ( W 1 + W 2 ) = d i m ( W 1 ) + d i m ( W 2 )
这四个命题等价

如果有限维线性空间V(F)的线性变换 σ σ 在V的某个基下的对应矩阵是对角阵,则称 σ σ 是可对角化的线性变换。同样与对角阵相似的矩阵A称为可对角化矩阵。

  • 定理7.8 A可对角化 A有n个线性无关的特征向量

  • 实对称矩阵A的特征值都是实数

  • 实对称矩阵A的属于不同特征值的特征向量是正交的

  • 若A是一个n阶实对称矩阵,则存在正交矩阵Q,使得

    Q1AQ=diag(λ1,,λn) Q − 1 A Q = d i a g ( λ 1 , ⋯ , λ n )

    证明:A至少存在一个特征值(且是实数)( |λEA|=0 | λ E − A | = 0 ,至少有n个根,包括重根。肯定有解 λ1 λ 1 。有解就表明零空间维度>0,存在非零的特征向量),所以至少存在相应的非零特征向量。之后用归纳法证明。
    说明实对称矩阵一定可对角化

  • 实对称矩阵A有 XTAX>0 X T A X > 0 恒成立,则A是正定矩阵。其相合于对角元大于0的对角阵。

  • 做坐标变换 X=CY X = C Y ,得到二次型 f=YT(CTAC)Y f = Y T ( C T A C ) Y ,不影响正定性。C是可逆矩阵

  • 正定 A的n个顺序主子式都大于0

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值