傅里叶级数构建信号要求频率有正有负_傅里叶详解之傅里叶级数

2c9a326b8cca8b7d1bc854507a922ac3.png

傅里叶级数

傅里叶级数在数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学等领域都有着广泛的应用。
傅里叶级数公式如下:

700655cd745085a0b8d129a13e98ac7b.png

其中

7ba4a2fa84f7e1014770f4b0ffb16925.png

傅里叶级数公式推导

把周期函数表示成三角级数

周期函数是客观世界中周期运动的数学表述,一般我们表示为:

8b9dedb81f2b9dd81f45db08e408c720.png

傅里叶猜想任何一个周期函数都可以表示成下面的样子:

8ee50f164742e926e80b8e9baa5b2052.png

因为n是从1到无穷大,是一个无穷级数。这里强调一下,傅里叶级数中对不同频率的波有一个要求就是给定一个初始的频率 w0,之后的角频率必须是 w0 的整数倍,这个也是离散傅里叶变化(DTF)角频率取值原则。

我们根据三角公式

4a727aef06a7a21e756fa17460181415.png

可以将(5)式转化成如下形式

328eb2061ae42c528ceecbd08b5b9eaa.png

我们合并常数项,计作

a0455a70d268cd5a2eaff0c3a2293d12.png

得到

de719954dab70af7d2592ade847d8886.png

我们只需要计算出A0、an、bn的值就可以了。
我们由泰勒级数知道任意一个函数都可以用一个多项式来逼近

4166a34a51c1478e6d7a2d558987b882.png

由麦克劳林可得

9ffe7d6a765d2882098d1d086a6d8209.png

在每个等式中令x = 0,然后使用待定系数法就可以解出A,B,C…的值

4a068c46822bb4a35f60bfd1ae0e2082.png

则可以推导出

96b9b1f93fd041769cc445ccb18c1514.png

然后我们对(6)式进行积分,我们三角函数在一个周期内的积分是0,可以解出A0。

三角函数的正交性

9e53b2b6ec4e75db05d18dd8f30e1319.png

由三角函数性质可以推导出

3b649548af2ff287be7fff2ee46c8e46.png

当k≠n的时候有

aacb8f36df8fb40ed788ca87e658350b.png

由上面的(6)式

2755abbaa2ae4dbf6f7bac423f73ddcc.png

对(6)式进行-π到π的积分,我们在此区间的可积性不做证明。

9ddce2903472d504d1521f4b4b12da79.png

解得

d8da66caa1807f235c7ca9374ee615cc.png

我们下面来求an和bn

43e6ee17e2a9898f4a4bdd21df322393.png

逐项积分

5c03b98fe9954b8022279f371fb73d14.png

由三角函数正交性

01811c38be5157eb3a573f29163aee96.png

37848a825f09a8dcc6e7bd7e9b4aa574.png

同理得到

1a4d46c97eac7b85108a5a4d039f9ca6.png

(6)式变为

54e3479189b2e8103540fcb680fa8870.png

将假设T = 2π带入得

701b5b5d531b01444792ab3c5595059f.png

目前我们也是需要区间内可积的问题,这里讲一点小故事,就是傅里叶一生致力于热学的研究,傅里叶级数和变化也最开始作用于热学问题的解决,论文发表后,一些学者标识方波无法达到可积条件,但是可以充分拟合,所以整体上还是没有问题的。

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页