arcgis双标准纬线等角圆锥投影_常用地图投影之圆锥投影

本文详细介绍了arcgis中的双标准纬线等角圆锥投影,包括投影的基本概念、分类和变形分析。重点讲解了正轴圆锥投影的基本公式和等角圆锥投影的应用,特别提到了在1:100万地图制作中的应用及其变形控制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基本概念

定义

设想用一个圆锥套在地球椭球体上,而把地球椭球上经纬网投影到圆锥面上,然后沿着某一条母线(经线)将圆锥面切开而展成平面,就得到圆锥投影。圆锥面和地球椭球体相切称为切圆锥投影,圆锥面和地球椭球相割时称为割圆锥投影。

分类

按圆锥面与地球椭球体的相对位置分:

正轴圆锥投影圆锥轴与地球椭球体的旋转轴相一致;

横轴圆锥投影圆锥轴与地球椭球体的长轴相一致;

斜轴圆锥投影圆锥轴既不和椭球体的旋转轴重合, 也不与它的长轴相重合。

按变形性质分

等角圆锥投影正轴等角圆锥投影也称为Lambert正形投影。

等面积圆锥投影正轴等面积割圆锥投影也称为Albers投影。

任意投影特例是等距离投影。

正轴圆锥的基本公式

极坐标公式为:

\[\rho=f(\phi)\]

\[\delta=\alpha \cdot \lambda\]

其中\(\delta\)表示两条经线夹角在平面上的投影。

\(\alpha\)表示\(\delta\)与\(\lambda\)的比值,小于1

\(\lambda\)表示地球椭球体上两经线的夹角。

直角坐标公式为:

\[x=\rho_{s}-\rho cos\delta\]

\[y=\rho sin\delta\]

其中\(\rho_{s}\)表示制图区域最低纬线的投影半径

在该投影中,经纬线投影后呈正交,故a、b就是是m、n, 即经纬线方向就是主方向。

正等角圆锥投影

基本公式:

根据等角条件   a=b或 m=n,得:

\[d\rh

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值