python做时序图_python如何做时间序列

本文介绍了使用Python进行时间序列分析的过程,包括数据生成、时间序列绘图、差分转换、ACF和PACF图表用于确定模型参数、ARIMA模型训练与检验,以及最终的模型预测。通过示例展示了如何处理非平稳序列并进行时间序列预测。
摘要由CSDN通过智能技术生成

python做时间序列的方法:首先导入需要的工具包,输入“data.plot()”,“plt().show()”命令绘制时序图;然后由acf,pacf判断模型参数即可。

采用python进行简易的时间序列预测流程

时间序列可视化——>序列平稳——>acf,pacf寻找最优参——>建立模型——>模型检验——>模型预测

涉及到的工具包如下:# -*- coding:utf-8 -*-

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from random import randrange

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

from statsmodels.tsa.arima_model import ARIMA

from statsmodels.api import tsa原始数据

时间序列是与时间相关的一组数据,这里的数据主要是生成的模拟数据,仅是为了练习一下处理【时间序列】的流程。def generate_data(start_date, end_date):

df = pd.DataFrame([300   i * 30   randrange(50) for i in range(31)], columns=['income'],

index=pd.date_range(start_date, end_date, freq='D'))

return df

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值