python 目标检测模型_【AI实战】手把手教你训练自己的目标检测模型(SSD篇)

本文详细介绍如何使用Python的SSD算法训练目标检测模型,从数据标注到模型训练,以熊猫识别为例,涵盖标注工具使用、数据集划分、模型配置、预训练模型下载及模型训练等步骤。
摘要由CSDN通过智能技术生成

目标检测是AI的一项重要应用,通过目标检测模型能在图像中把人、动物、汽车、飞机等目标物体检测出来,甚至还能将物体的轮廓描绘出来,就像下面这张图,是不是很酷炫呢,嘿嘿

在动手训练自己的目标检测模型之前,建议先了解一下目标检测模型的原理(见文章:大话目标检测经典模型RCNN、Fast RCNN、Faster RCNN,以及Mark R-CNN),这样才会更加清楚模型的训练过程。

本文将在我们前面搭建好的AI实战基础环境上(见文章:AI基础环境搭建),基于SSD算法,介绍如何使用自己的数据训练目标检测模型。SSD,全称Single Shot MultiBox Detector(单镜头多盒检测器),是Wei Liu在ECCV 2016上提出的一种目标检测算法,是目前流行的主要检测框架之一。

本案例要做的识别便是在图像中识别出熊猫,可爱吧,呵呵

 

下面按照以下过程介绍如何使用自己的数据训练目标检测模型:

 

1、安装标注工具

要使用自己的数据来训练模型,首先得先作数据标注,也就是先要告诉机器图像里面有什么物体、物体在位置在哪里,有了这些信息后才能来训练模型。

(1)标注数据文件

目前流行的数据标注文件格式主要有VOC_2007、VOC_2012,该文本格式来源于Pascal VOC标准数据集,这是衡量图像分类识别能力的重要基准之一。本文采用VOC_2007数据格式文件,以xml格式存储,如下:

其中重要的信息有:

filename:图片的文件名

name:标注的物体名称

xmin、ymin、xmax、ymax:物体位置的左上角、右下角坐标

(2)安装标注工具

如果要标注的图像有很多,那就需要一张一张手动去计算位置信息,制作xml文件,这样的效率就太低了。

所幸,有一位大神开源了一个数据标注工具labelImg,可以通过可视化的操作界面进行画框标注,就能自动生成VOC格式的xml文件了。该工具是基于Python语言编写的,这样就支持在Windows、Linux的跨平台运行,实在是良心之作啊。安装方式如下:

a. 下载源代码

通过访问labelImg的github页面(https

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值