前言
本题知识点:贪心
贪心算法一般按如下步骤进行:
1、建立数学模型来描述问题
2、把求解的问题分成若干个子问题
3、对每个子问题求解,得到子问题的局部最优解
4、把子问题的解局部最优解合成原来解问题的一个解
题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
先上代码再解释:
其中target表示第target级台阶
public class Solution {
public int JumpFloorII(int target) {
if (target == 0 || target == 1)
return 1;
else
return 2 * JumpFloorII(target - 1);
}
}
代码超级简单,但是原理有一定难度,这种递归的都是写起来就一点,但是背后逻辑要花点时间推敲。
看我画的小青蛙,还阔以吧,自我感觉良好,嘿嘿,我们来分析分析把。
分析:
首先说明,f(n)表示n级台阶的总跳法
如只有一个台阶,n=1,f(1)=1
要跳到第n级,就有要讨论n种情况:
第1种情况:先跳一级,那还有n-1级没有跳,即还有f(n-1)种跳法
第2种情况:先跳两级,那还有n-2级没有跳,即还有f(n-2)种跳法
第3种情况:先跳三级,那还有n-3级没有跳,即还有f(n-3)种跳法
…
第n-1种情况:先跳n-1级,那还有1级没有跳,即还有f(1)=1种跳法
第n种情况:直接跳到n级,即f(n-n)=f(0)=1,其中-n表示直接跳n级,一次登顶
这里就知道了f(0)=1,f(1)=1,f(0)是直接跳到最后台阶的跳法,f(1)是跳到第一个台阶的跳法
我们把n种情况相加,就是跳到n级台阶的总跳法了
f(n) = f(n-1)+f(n-2)+…+f(n-(n-1))+f(n-n) = f(0)+f(1)+…+f(n-2)+f(n-1)
同理
f(n-1)=f((n-1)-1)+f((n-1)-2)+…+f((n-1)-(n-2))+f((n-1)-(n-1))=f(0)+f(1)+…+f(n-2)
我们可以观察到两个式子加粗部分相同,所以可以替换成f(n)=f(n-1)+f(n-1)=2×f(n-1)
所以我们可以得到下面的公式:
由该公式即可进行编码。