【剑指offer简单部分3】变态跳台阶(java )

前言

本题知识点:贪心

贪心算法一般按如下步骤进行:
1、建立数学模型来描述问题
2、把求解的问题分成若干个子问题
3、对每个子问题求解,得到子问题的局部最优解
4、把子问题的解局部最优解合成原来解问题的一个解

题目描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

先上代码再解释:
其中target表示第target级台阶

public class Solution {
        public int JumpFloorII(int target) {
        if (target == 0 || target == 1)
            return 1;
        else
            return 2 * JumpFloorII(target - 1);
    }
}

代码超级简单,但是原理有一定难度,这种递归的都是写起来就一点,但是背后逻辑要花点时间推敲。
在这里插入图片描述
看我画的小青蛙,还阔以吧,自我感觉良好,嘿嘿,我们来分析分析把。

分析:
首先说明,f(n)表示n级台阶的总跳法
如只有一个台阶,n=1,f(1)=1
要跳到第n级,就有要讨论n种情况
第1种情况:先跳一级,那还有n-1级没有跳,即还有f(n-1)种跳法
第2种情况:先跳两级,那还有n-2级没有跳,即还有f(n-2)种跳法
第3种情况:先跳三级,那还有n-3级没有跳,即还有f(n-3)种跳法

第n-1种情况:先跳n-1级,那还有1级没有跳,即还有f(1)=1种跳法
第n种情况:直接跳到n级,即f(n-n)=f(0)=1,其中-n表示直接跳n级,一次登顶

这里就知道了f(0)=1,f(1)=1,f(0)是直接跳到最后台阶的跳法,f(1)是跳到第一个台阶的跳法

我们把n种情况相加,就是跳到n级台阶的总跳法了
f(n) = f(n-1)+f(n-2)+…+f(n-(n-1))+f(n-n) = f(0)+f(1)+…+f(n-2)+f(n-1)
同理
f(n-1)=f((n-1)-1)+f((n-1)-2)+…+f((n-1)-(n-2))+f((n-1)-(n-1))=f(0)+f(1)+…+f(n-2)
我们可以观察到两个式子加粗部分相同,所以可以替换成f(n)=f(n-1)+f(n-1)=2×f(n-1)

所以我们可以得到下面的公式:
在这里插入图片描述

由该公式即可进行编码。
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小样x

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值