本文是吴恩达《机器学习》视频笔记第57篇,对应第5周第7个视频。
“Neural Networks Learning:——Putting it together”
前面几个小节都讲了神经网络的一些东东,因为神经网络在机器学习中的地位实在是太重要了,所以需要单独一节把前面学到的事总结一下。
确定神经网络的结构
神经网络的结构呢,无非就是输入层、输出层外加隐藏层,那隐藏层有几层?每一层有多少个神经元?输入层、输出层分别又有多少个单元?
那这些多少,到底该是多少呢?在进行神经网络训练之前必须回答这些问题。
首先,输入层的单元数是由你的自变量的维度决定的;
其次,输出层的单元数又是由要分类的问题最终分成多少个类来决定的。
因此,神经网络结构的选择问题,实质上就是要确定隐藏层的层数以及各隐藏层的单元数目。
以3个输入单元、4个输出单元的神经网络为例,常见的隐藏层的设置如下图所示。