神经网络的输出层有哪些_神经网络算法—总结篇

本文总结了吴恩达《机器学习》中关于神经网络的内容,包括确定神经网络结构的关键因素,如输入层由自变量维度决定,输出层由分类问题类别数决定,隐藏层的层数和单元数需平衡训练效果和速度。训练神经网络的一般步骤包括随机初始化权重、前向传播、计算代价函数、反向传播和梯度检验等。
摘要由CSDN通过智能技术生成

本文是吴恩达《机器学习》视频笔记第57篇,对应第5周第7个视频。

“Neural Networks Learning:——Putting it together”

eb6af69de5161367c3a2a88e75751ca7.png

前面几个小节都讲了神经网络的一些东东,因为神经网络在机器学习中的地位实在是太重要了,所以需要单独一节把前面学到的事总结一下。

确定神经网络的结构

神经网络的结构呢,无非就是输入层、输出层外加隐藏层,那隐藏层有几层?每一层有多少个神经元?输入层、输出层分别又有多少个单元?

那这些多少,到底该是多少呢?在进行神经网络训练之前必须回答这些问题。

首先,输入层的单元数是由你的自变量的维度决定的;

其次,输出层的单元数又是由要分类的问题最终分成多少个类来决定的。

因此,神经网络结构的选择问题,实质上就是要确定隐藏层的层数以及各隐藏层的单元数目。

以3个输入单元、4个输出单元的神经网络为例,常见的隐藏层的设置如下图所示。

ba75077cbcf94ab8b7bf14fd1fbcc8d6.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值