劈尖干涉公式_劈尖干涉条纹间距的推导及应用

本文探讨了劈尖干涉现象,分析了平行单色光照射劈尖时产生的干涉条纹间距的影响因素,包括劈尖顶角、折射率和波长。内容涉及去掉垫片时条纹间距的变化、物质折射率或波长改变对条纹的影响,以及玻璃板表面不平整(凹坑或凸包)对干涉条纹的形态影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1003-6148(2007)11(S)-0020-1

若平行单色光垂直照射劈尖,光在劈尖的上、下两个表面分别反射,形成两束相干光,经

干涉产生等间距、明暗相间的平行于棱边的干涉条纹,那么影响干涉条纹间距的因素有哪些

呢?

应用

如图

2

所示,将一块平板玻璃放置在另一块平板玻璃之上,在一端夹入两个小垫

片,从而在两玻璃板表面之间形成了一个劈形空气薄膜,当光垂直入射后,从上向下看到明暗

相间,等间距的干涉条纹(

1

)若去掉一个垫片,干涉条纹如何变化?(

2

)改变劈形薄膜物质

的折射率或入射光波长,干涉条纹如何变化?(

3

)若水平玻璃板上有

凹坑

凸包

,干涉

条纹如何变化?

分析

Δx=λ/(2θn)

可知:

(

1

)若去掉一个垫片,则劈尖的顶角

θ

减小,条纹间距变大,条纹变宽、变疏。

(

2

)劈形区域物质折射率

n

变大或入射光的波长

λ

减小,条纹间距变小,条纹变窄、变

密。折射率

n

变小或入射光的波长

λ

增大,条纹间距变大,条纹变宽、变疏。

(

3

)

若水平玻璃板上有

凹坑

,可做如图

oa

ob

oc…

等辅助面,对应顶角都大于

θ

,因而对应部分条纹间距变窄,

拐弯

拐向顶角一侧。如图

3

所示。

若水平玻璃板上有

凸包

,可做如图

oa

ob

oc…

等辅助面,对应顶角都小于

θ

,因而

干涉条纹间距变宽,

拐弯

拐向顶角的另一侧。如图

4

所示。

(

栏目编辑黄懋恩

)

考,及时对课

### 使用MATLAB处理干涉条纹图像并计算条纹半径 #### 干涉条纹图像预处理 为了有效地分析干涉条纹图,通常需要先对原始图像进行预处理。这一步骤可以去除噪声和其他干扰因素,使后续的特征提取更加精确。 ```matlab % 读取干涉条纹图像 I = imread('interference_pattern.png'); % 转换为灰度图像 grayImage = rgb2gray(I); % 应用高斯滤波器减少噪声 filteredImage = imgaussfilt(grayImage, 2); ``` #### 提取条纹中心线 通过傅里叶变换或其他频域方法可以从复杂的干涉图案中分离出主要频率成分,进而定位到条纹的位置。 ```matlab % 计算二维快速傅立叶变换 (FFT) F = fftshift(fft2(filteredImage)); % 显示频谱图 figure; imshow(log(abs(F)), []); title('Frequency Spectrum'); colormap(jet); % 反向 FFT 获取相位信息 phaseImage = angle(ifft2(F)); ``` #### 条纹间距测量 一旦获得了清晰可见的条纹结构,则可以通过边缘检测算法来识别这些线条,并进一步估计它们之间的距离即所谓的“条纹宽度”。 ```matlab % 边缘检测 edges = edge(phaseImage, 'Canny'); % 查找轮廓 contours = bwboundaries(edges); % 绘制所有找到的边界 figure; imshow(edges); hold on; for k = 1:length(contours) boundary = contours{k}; plot(boundary(:,2), boundary(:,1),'r','LineWidth',2); end hold off; % 测量相邻两条边界的平均距离作为条纹宽度 stripeWidths = zeros(length(contours)-1, 1); for i = 1:(length(contours)-1) stripeWidths(i) = pdist2(contours{i}, contours{i+1}); end meanStripeWidth = mean(stripeWidths); disp(['Average Stripe Width:', num2str(meanStripeWidth)]); ``` #### 计算条纹曲率与半径 当已知条纹间的平均间隔后,可以根据几何关系推导出每一条纹对应的圆弧部分所代表的实际物理尺寸——也就是条纹半径。 假设实验设置下光程差ΔL=λ/2(这里λ表示激光波长),那么对于任意给定位置处的一组平行条纹来说: \[ R=\frac{\Delta L}{\theta} \] 其中θ是从该点指向下一个相同强度级次方向的角度变化量;而ΔL则由上述提到的方式获得[^1]。 ```matlab lambda = 632.8e-9; % HeNe Laser wavelength in meters delta_L = lambda / 2; % 假设我们已经得到了角度 theta 的数组 thetas = ... ; radii = delta_L ./ thetas; averageRadius = mean(radii); fprintf('The average radius of curvature is %.2f microns.\n',... averageRadius * 1e6); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值