numpy没有独立于“矩阵”的“向量”概念,它确实有“矩阵”和“数组”的不同概念,但大多数人完全避免使用矩阵表示。如果使用数组,“vector”、“matrix”和“tensor”的概念都包含在数组“shape”属性的一般概念下。
在这个世界观中,向量和矩阵都是二维数组,仅以其形状区分。行向量是形状为(1, n)的数组,而列向量是形状为(n, 1)的数组。矩阵是形状为(n, m)的数组。一维数组有时会表现得像向量,这取决于上下文,但通常您会发现,除非您“升级”它们,否则无法获得所需的内容。
考虑到这些,这里有一个可能的答案来回答你的问题。首先,我们创建一个一维数组:>>> a1d = numpy.array([1, 2, 3])
>>> a1d
array([1, 2, 3])
现在,我们对其进行重新造型以创建列向量。这里的-1告诉numpy计算给定输入的正确大小。>>> vcol = a1d.reshape((-1, 1))
>>> vcol
array([[1],
[2],
[3]])
请注意此项开始和结束处的双括号。这暗示着这是一个二维数组,尽管一维的大小只有1。
我们可以做同样的事情,交换维度,得到一行。再次注意双括号。>>> vrow = a1d.reshape((1, -1))
>>> vrow
array([[1, 2, 3]])
可以看出这些是二维数组,因为一维数组的shape元组中只有一个值:>>> a1d.shape
(3,)
>>> vcol.shape
(3, 1)
>>> vrow.shape
(1, 3)
要从列向量构建矩阵,我们可以使用hstack。有很多其他方法可能更快,但这是一个很好的起点。这里,请注意[vcol]不是一个numpy对象,而是一个普通的python列表,因此[vcol] * 3与[vcol, vcol, vcol]的含义相同。>>> mat = numpy.hstack([vcol] * 3)
>>> mat
array([[1, 1, 1],
[2, 2, 2],
[3, 3, 3]])
并且vstack从行向量给出了相同的结果。>>> mat2 = numpy.vstack([vrow] * 3)
>>> mat2
array([[1, 2, 3],
[1, 2, 3],
[1, 2, 3]])
“从矩阵的向量构造向量矩阵”的任何其他解释都不太可能在numpy中生成您真正想要的东西!
既然你提到要做线性代数,这里有两个可能的操作。这假设您使用的是最新版本的python来使用新的@运算符,该运算符为数组的矩阵乘法提供了明确的内联表示法
对于数组,乘法总是按元素顺序进行。但有时也有广播。对于具有相同形状的值,这是简单的元素乘法:>>> vrow * vrow
array([[1, 4, 9]])
>>> vcol * vcol
array([[1],
[4],
[9]])
当值具有不同的形状时,如果可能,它们将一起广播以产生合理的结果:>>> vrow * vcol
array([[1, 2, 3],
[2, 4, 6],
[3, 6, 9]])
>>> vcol * vrow
array([[1, 2, 3],
[2, 4, 6],
[3, 6, 9]])
广播的工作方式与您对其他形状的期望一样:>>> vrow * mat
array([[1, 2, 3],
[2, 4, 6],
[3, 6, 9]])
>>> vcol * mat
array([[1, 1, 1],
[4, 4, 4],
[9, 9, 9]])
如果需要点积,则必须使用@运算符:>>> vrow @ vcol
array([[14]])
注意,与*运算符不同,这不是对称的:>>> vcol @ vrow
array([[1, 2, 3],
[2, 4, 6],
[3, 6, 9]])
一开始这可能有点混乱,因为这看起来与vrow * vcol相同,但不要上当。*将生成相同的结果,而不考虑参数顺序。最后,对于矩阵向量积:>>> mat @ vcol
array([[ 6],
[12],
[18]])
再次观察@和*之间的区别:>>> mat * vcol
array([[1, 1, 1],
[4, 4, 4],
[9, 9, 9]])
1。遗憾的是,这只存在于Python3.5之后。如果需要使用早期版本,则所有相同的建议都适用,除了不使用a @ b的内联表示法外,还必须使用np.dot(a, b)。numpy的matrix类型重写*以类似@的行为。。。但是你不能用同样的方式进行元素乘法或广播!因此,即使您有一个早期版本,我也不建议使用matrix类型。