数据挖掘算法_最常使用的数据挖掘算法——决策树

决策树(Decision Tree)算法主要用来处理分类问题,是最经常使用的数据挖掘算法之一。

决策树 场景

一个叫做 "二十个问题" 的游戏,游戏的规则很简单:参与游戏的一方在脑海中想某个事物,其他参与者向他提问,只允许提 20 个问题,问题的答案也只能用对或错回答。问问题的人通过推断分解,逐步缩小待猜测事物的范围,最后得到游戏的答案。

一个邮件分类系统,大致工作流程如下:

e2ce2fc936c0dc63d314b5be29f20faa.png

首先检测发送邮件域名地址。如果地址为 myEmployer.com, 则将其放在分类 "无聊时需要阅读的邮件"中。

如果邮件不是来自这个域名,则检测邮件内容里是否包含单词 "曲棍球" , 如果包含则将邮件归类到 "需要及时处理的朋友邮件", 如果不包含则将邮件归类到 "无需阅读的垃圾邮件" 。

决策树 原理

1、决策树 须知概念

信息熵 & 信息增益

  • 熵: 熵(entropy)指的是体系的混乱的程度,在不同的学科中也有引申出的更为具体的定义,是各领域十分重要的参量。

  • 信息熵(香农熵): 是一种信息的度量方式,表示信息的混乱程度,也就是说:信息越有序,信息熵越低。例如:火柴有序放在火柴盒里,熵值很低,相反,熵值很高。

  • 信息增益: 在划分数据集前后信息发生的变化称为信息增益。

2、决策树工作原理

如何构造一个决策树? 我们使用 createBranch() 方法,如下所示:

检测数据集中的所有数据的分类标签是否相同:    If so return 类标签    Else:        寻找划分数据集的最好特征(划分之后信息熵最小,也就是信息增益最大的特征)        划分数据集        创建分支节点            for 每个划分的子集                调用函数 createBranch (创建分支的函数)并增加返回结果到分支节点中        return 分支节点

3、决策树开发流程

  • 收集数据:可以使用任何方法。

  • 准备数据:树构造算法只适用于标称型数据,因此数值型数据必须离散化。

  • 分析数据:可以使用任何方法,构造树完成之后,我们应该检查图形是否符合预期。

  • 训练算法:构造树的数据结构。

  • 测试算法:使用经验树计算错误率。(经验树没有搜索到较好的资料,有兴趣的同学可以来补充)

  • 使用算法:此步骤可以适用于任何监督学习算法,而使用决策树可以更好地理解数据的内在含义。

4、决策树算法特点

  • 优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。

  • 缺点:可能会产生过度匹配问题。

  • 适用数据类型:数值型和标称型。

决策树 Demo演示

Demo1:决策树分类-鸢尾花数据

#!/usr/bin/python# coding:utf-8"""Created on 2017-06-29Updated on 2017-06-29DecisionTree:决策树@author: 小瑶《机器学习实战》更新地址:https://github.com/apachecn/MachineLearning"""#print(__doc__)import numpy as npimport matplotlib.pyplot as pltfrom sklearn.datasets import load_irisfrom sklearn.tree import DecisionTreeClassifier%matplotlib inline# 参数n_classes = 3plot_colors = "bmy"plot_step = 0.02# 加载数据iris = load_iris()for pairidx, pair in enumerate([[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]]):#for pairidx, pair in enumerate([[0, 1]]):# 我们只用两个相应的features    X = iris.data[:, pair]    y = iris.target    # 训练    clf = DecisionTreeClassifier().fit(X, y)    # 绘制决策边界    plt.subplot(2, 3, pairidx + 1)    #plt.subplot(1, 1, pairidx + 1)    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1    xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step),                         np.arange(y_min, y_max, plot_step))    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])    Z = Z.reshape(xx.shape)    cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)    plt.xlabel(iris.feature_names[pair[0]])    plt.ylabel(iris.feature_names[pair[1]])    plt.axis("tight")    # 绘制训练点    for i, color in zip(range(n_classes), plot_colors):        idx = np.where(y == i)        plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i],                    cmap=plt.cm.Paired)    plt.axis("tight")plt.suptitle("Decision surface of a decision tree using paired features")plt.legend()plt.show()
529ee4cfbfcdb151f63cc5b4f726971c.png c9ae3162e2607f4e35e196cc0aeed0e4.png

Demo2: 决策树 回归

#!/usr/bin/python# coding:utf8"""Created on 2017-06-29Updated on 2017-06-29DecisionTree:决策树@author: 小瑶《机器学习实战》更新地址:https://github.com/apachecn/MachineLearning"""print(__doc__)# 引入必要的模型和库import numpy as npfrom sklearn.tree import DecisionTreeRegressorimport matplotlib.pyplot as plt# 创建一个随机的数据集# 参考 https://docs.scipy.org/doc/numpy-1.6.0/reference/generated/numpy.random.mtrand.RandomState.htmlrng = np.random.RandomState(1)# print 'lalalalala===', rng# rand() 是给定形状的随机值,rng.rand(80, 1)即矩阵的形状是 80行,1列# sort() X = np.sort(5 * rng.rand(80, 1), axis=0)# print 'X=', Xy = np.sin(X).ravel()# print 'y=', yy[::5] += 3 * (0.5 - rng.rand(16))# print 'yyy=', y# 拟合回归模型# regr_1 = DecisionTreeRegressor(max_depth=2)# 保持 max_depth=5 不变,增加 min_samples_leaf=6 的参数,效果进一步提升了regr_2 = DecisionTreeRegressor(max_depth=5)regr_2 = DecisionTreeRegressor(min_samples_leaf=6)# regr_3 = DecisionTreeRegressor(max_depth=4)# regr_1.fit(X, y)regr_2.fit(X, y)# regr_3.fit(X, y)# 预测X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]# y_1 = regr_1.predict(X_test)y_2 = regr_2.predict(X_test)# y_3 = regr_3.predict(X_test)# 绘制结果plt.figure()plt.scatter(X, y, c="darkorange", label="data")# plt.plot(X_test, y_1, color="cornflowerblue", label="max_depth=2", linewidth=2)plt.plot(X_test, y_2, color="yellowgreen", label="max_depth=5", linewidth=2)# plt.plot(X_test, y_3, color="red", label="max_depth=3", linewidth=2)plt.xlabel("data")plt.ylabel("target")plt.title("Decision Tree Regression")plt.legend()plt.show()
0eb036313a5d1bc32c7c2d0a2682765d.png 614aece43816ff338c16e815cd387636.png

决策树 项目案例

项目案例1: 判定鱼类和非鱼类

1、项目概述:

根据以下2个特征,将动物分成两类:鱼类和非鱼类。

特征: 

  • 不浮出水面是否可以生存

  • 是否有脚蹼

2、开发流程

  • 收集数据:可以使用任何方法

  • 准备数据:树构造算法只适用于标称型数据,因此数值型数据必须离散化

  • 分析数据:可以使用任何方法,构造树完成之后,我们应该检查图形是否符合预期

  • 训练算法:构造树的数据结构

  • 测试算法:使用决策树执行分类

  • 使用算法:此步骤可以适用于任何监督学习算法,而使用决策树可以更好地理解数据的内在含义

  • 1 数据收集:可以使用任何方法

e23c422a00e2e77afbff55fb19319b90.png

我们利用 createDataSet() 函数输入数据

def createDataSet():    dataSet = [[1, 1, 'yes'],            [1, 1, 'yes'],            [1, 0, 'no'],            [0, 1, 'no'],            [0, 1, 'no']]    labels = ['no surfacing', 'flippers']    return dataSet, labels
  • 2 准备数据:树构造算法只适用于标称型数据,因此数值型数据必须离散化,此处,由于我们输入的数据本身就是离散化数据,所以这一步就省略了。

  • 3 分析数据:可以使用任何方法,构造树完成之后,我们应该检查图形是否符合预期

6bba47ef95a285ecc3e4fcbdb4713129.png

计算给定数据集的香农熵的函数

def calcShannonEnt(dataSet):    """    Desc:        calculate Shannon entropy -- 计算给定数据集的香农熵    Args:        dataSet -- 数据集    Returns:        shannonEnt -- 返回 每一组 feature 下的某个分类下,香农熵的信息期望    """    # -----------计算香农熵的第一种实现方式start------------------------------------------------    # 求list的长度,表示计算参与训练的数据量    numEntries = len(dataSet)    # 下面输出我们测试的数据集的一些信息    # 例如: numEntries:  5 是下面的代码的输出    # print(type(dataSet), 'numEntries: ', numEntries)    # 计算分类标签label出现的次数    labelCounts = {}    # the the number of unique elements and their occurance    for featVec in dataSet:        # 将当前实例的标签存储,即每一行数据的最后一个数据代表的是标签        currentLabel = featVec[-1]        # 为所有可能的分类创建字典,如果当前的键值不存在,则扩展字典并将当前键值加入字典。每个键值都记录了当前类别出现的次数。        if currentLabel not in labelCounts.keys():            labelCounts[currentLabel] = 0        labelCounts[currentLabel] += 1        # print('-----', featVec, labelCounts)    # 对于label标签的占比,求出label标签的香农熵    shannonEnt = 0.0    for key in labelCounts:        # 使用所有类标签的发生频率计算类别出现的概率。        prob = float(labelCounts[key])/numEntries        # log base 2        # 计算香农熵,以 2 为底求对数        shannonEnt -= prob * log(prob, 2)        # print('---', prob, prob * log(prob, 2), shannonEnt)    # -----------计算香农熵的第一种实现方式end--------------------------------------------------    # # -----------计算香农熵的第二种实现方式start----------------------------------------------    # # 统计标签出现的次数    # label_count = Counter(data[-1] for data in dataSet)    # # 计算概率    # probs = [p[1] / len(dataSet) for p in label_count.items()]    # # 计算香农熵    # shannonEnt = sum([-p * log(p, 2) for p in probs])    # # -----------计算香农熵的第二种实现方式end--------------------------------------------------------------------------------    return shannonEnt

按照给定特征划分数据集

将指定特征的特征值等于 value 的行剩下列作为子数据集。

def splitDataSet(dataSet, index, value):    """splitDataSet(通过遍历dataSet数据集,求出index对应的colnum列的值为value的行)        就是依据index列进行分类,如果index列的数据等于 value的时候,就要将 index 划分到我们创建的新的数据集中    Args:        dataSet 数据集                 待划分的数据集        index 表示每一行的index列        划分数据集的特征        value 表示index列对应的value值   需要返回的特征的值。    Returns:        index列为value的数据集【该数据集需要排除index列】    """    retDataSet = []    for featVec in dataSet:         # index列为value的数据集【该数据集需要排除index列】        # 判断index列的值是否为value        if featVec[index] == value:            # chop out index used for splitting            # [:index]表示前index行,即若 index 为2,就是取 featVec 的前 index 行            reducedFeatVec = featVec[:index]            '''            请百度查询一下: extend和append的区别            list.append(object) 向列表中添加一个对象object            list.extend(sequence) 把一个序列seq的内容添加到列表中            1、使用append的时候,是将new_media看作一个对象,整体打包添加到music_media对象中。            2、使用extend的时候,是将new_media看作一个序列,将这个序列和music_media序列合并,并放在其后面。            result = []            result.extend([1,2,3])            print result            result.append([4,5,6])            print result            result.extend([7,8,9])            print result            结果:            [1, 2, 3]            [1, 2, 3, [4, 5, 6]]            [1, 2, 3, [4, 5, 6], 7, 8, 9]            '''            reducedFeatVec.extend(featVec[index+1:])            # [index+1:]表示从跳过 index 的 index+1行,取接下来的数据            # 收集结果值 index列为value的行【该行需要排除index列】            retDataSet.append(reducedFeatVec)    return retDataSet

选择最好的数据集划分方式

def chooseBestFeatureToSplit(dataSet):    """chooseBestFeatureToSplit(选择最好的特征)    Args:        dataSet 数据集    Returns:        bestFeature 最优的特征列    """    # 求第一行有多少列的 Feature, 最后一列是label列嘛    numFeatures = len(dataSet[0]) - 1    # 数据集的原始信息熵    baseEntropy = calcShannonEnt(dataSet)    # 最优的信息增益值, 和最优的Featurn编号    bestInfoGain, bestFeature = 0.0, -1    # iterate over all the features    for i in range(numFeatures):        # create a list of all the examples of this feature        # 获取对应的feature下的所有数据        featList = [example[i] for example in dataSet]        # get a set of unique values        # 获取剔重后的集合,使用set对list数据进行去重        uniqueVals = set(featList)        # 创建一个临时的信息熵        newEntropy = 0.0        # 遍历某一列的value集合,计算该列的信息熵         # 遍历当前特征中的所有唯一属性值,对每个唯一属性值划分一次数据集,计算数据集的新熵值,并对所有唯一特征值得到的熵求和。        for value in uniqueVals:            subDataSet = splitDataSet(dataSet, i, value)            # 计算概率            prob = len(subDataSet)/float(len(dataSet))            # 计算信息熵            newEntropy += prob * calcShannonEnt(subDataSet)        # gain[信息增益]: 划分数据集前后的信息变化, 获取信息熵最大的值        # 信息增益是熵的减少或者是数据无序度的减少。最后,比较所有特征中的信息增益,返回最好特征划分的索引值。        infoGain = baseEntropy - newEntropy        print ('infoGain=', infoGain, 'bestFeature=', i, baseEntropy, newEntropy)        if (infoGain > bestInfoGain):            bestInfoGain = infoGain            bestFeature = i    return bestFeature

问:上面的 newEntropy 为什么是根据子集计算的呢?
答:因为我们在根据一个特征计算香农熵的时候,该特征的分类值是相同,这个特征这个分类的香农熵为 0; 这就是为什么计算新的香农熵的时候使用的是子集。

  • 4 训练算法:构造树的数据结构

创建树的函数代码如下:

def createTree(dataSet, labels):    """    Desc:        创建决策树    Args:        dataSet -- 要创建决策树的训练数据集        labels -- 训练数据集中特征对应的含义的labels,不是目标变量    Returns:        myTree -- 创建完成的决策树    """    classList = [example[-1] for example in dataSet]    # 如果数据集的最后一列的第一个值出现的次数=整个集合的数量,也就说只有一个类别,就只直接返回结果就行    # 第一个停止条件:所有的类标签完全相同,则直接返回该类标签。    # count() 函数是统计括号中的值在list中出现的次数    if classList.count(classList[0]) == len(classList):        return classList[0]    # 如果数据集只有1列,那么最初出现label次数最多的一类,作为结果    # 第二个停止条件:使用完了所有特征,仍然不能将数据集划分成仅包含唯一类别的分组。    if len(dataSet[0]) == 1:        return majorityCnt(classList)    # 选择最优的列,得到最优列对应的label含义    bestFeat = chooseBestFeatureToSplit(dataSet)    # 获取label的名称    bestFeatLabel = labels[bestFeat]    # 初始化myTree    myTree = {bestFeatLabel: {}}    # 注:labels列表是可变对象,在PYTHON函数中作为参数时传址引用,能够被全局修改    # 所以这行代码导致函数外的同名变量被删除了元素,造成例句无法执行,提示'no surfacing' is not in list    del(labels[bestFeat])    # 取出最优列,然后它的branch做分类    featValues = [example[bestFeat] for example in dataSet]    uniqueVals = set(featValues)    for value in uniqueVals:        # 求出剩余的标签label        subLabels = labels[:]        # 遍历当前选择特征包含的所有属性值,在每个数据集划分上递归调用函数createTree()        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)        # print('myTree', value, myTree)    return myTree
  • 5 测试算法:使用决策树执行分类

def classify(inputTree, featLabels, testVec):    """    Desc:        对新数据进行分类    Args:        inputTree  -- 已经训练好的决策树模型        featLabels -- Feature标签对应的名称,不是目标变量        testVec    -- 测试输入的数据    Returns:        classLabel -- 分类的结果值,需要映射label才能知道名称    """    # 获取tree的根节点对于的key值    firstStr = list(inputTree.keys())[0]    # 通过key得到根节点对应的value    secondDict = inputTree[firstStr]    # 判断根节点名称获取根节点在label中的先后顺序,这样就知道输入的testVec怎么开始对照树来做分类    featIndex = featLabels.index(firstStr)    # 测试数据,找到根节点对应的label位置,也就知道从输入的数据的第几位来开始分类    key = testVec[featIndex]    valueOfFeat = secondDict[key]    print('+++', firstStr, 'xxx', secondDict, '---', key, '>>>', valueOfFeat)    # 判断分枝是否结束: 判断valueOfFeat是否是dict类型    if isinstance(valueOfFeat, dict):        classLabel = classify(valueOfFeat, featLabels, testVec)    else:        classLabel = valueOfFeat    return classLabel
  • 6 使用算法:此步骤可以适用于任何监督学习算法,而使用决策树可以更好地理解数据的内在含义。

#项目一:判定鱼类和非鱼类#decisionTreePlot.py#!/usr/bin/python# -*- coding: UTF-8 -*-'''Created on Oct 14, 2010Update on 2017-02-27Decision Tree Source Code for Machine Learning in Action Ch. 3@author: Peter Harrington/jiangzhonglian'''import matplotlib.pyplot as plt%matplotlib inline# 定义文本框 和 箭头格式 【 sawtooth 波浪方框, round4 矩形方框 , fc表示字体颜色的深浅 0.1~0.9 依次变浅,没错是变浅】decisionNode = dict(boxstyle="sawtooth", fc="0.8")leafNode = dict(boxstyle="round4", fc="0.8")arrow_args = dict(arrowstyle=")def getNumLeafs(myTree):    numLeafs = 0    firstStr = list(myTree.keys())[0]    secondDict = myTree[firstStr]    # 根节点开始遍历    for key in secondDict.keys():        # 判断子节点是否为dict, 不是+1        if type(secondDict[key]) is dict:            numLeafs += getNumLeafs(secondDict[key])        else:            numLeafs += 1    return numLeafsdef getTreeDepth(myTree):    maxDepth = 0    firstStr = list(myTree.keys())[0]    secondDict = myTree[firstStr]    # 根节点开始遍历    for key in secondDict.keys():        # 判断子节点是不是dict, 求分枝的深度        # ----------写法1 start ---------------        if type(secondDict[key]) is dict:            thisDepth = 1 + getTreeDepth(secondDict[key])        else:            thisDepth = 1        # ----------写法1 end ---------------        # ----------写法2 start --------------        # thisDepth = 1 + getTreeDepth(secondDict[key]) if type(secondDict[key]) is dict else 1        # ----------写法2 end --------------        # 记录最大的分支深度        maxDepth = max(maxDepth, thisDepth)    return maxDepthdef plotNode(nodeTxt, centerPt, parentPt, nodeType):    createPlot.ax1.annotate(nodeTxt, xy=parentPt,  xycoords='axes fraction', xytext=centerPt, textcoords='axes fraction', va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)def plotMidText(cntrPt, parentPt, txtString):    xMid = (parentPt[0] - cntrPt[0]) / 2 + cntrPt[0]    yMid = (parentPt[1] - cntrPt[1]) / 2 + cntrPt[1]    createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)def plotTree(myTree, parentPt, nodeTxt):    # 获取叶子节点的数量    numLeafs = getNumLeafs(myTree)    # 获取树的深度    # depth = getTreeDepth(myTree)    # 找出第1个中心点的位置,然后与 parentPt定点进行划线    cntrPt = (plotTree.xOff + (1 + numLeafs) / 2 / plotTree.totalW, plotTree.yOff)    # print(cntrPt)    # 并打印输入对应的文字    plotMidText(cntrPt, parentPt, nodeTxt)    firstStr = list(myTree.keys())[0]    # 可视化Node分支点    plotNode(firstStr, cntrPt, parentPt, decisionNode)    # 根节点的值    secondDict = myTree[firstStr]    # y值 = 最高点-层数的高度[第二个节点位置]    plotTree.yOff = plotTree.yOff - 1 / plotTree.totalD    for key in secondDict.keys():        # 判断该节点是否是Node节点        if type(secondDict[key]) is dict:            # 如果是就递归调用[recursion]            plotTree(secondDict[key], cntrPt, str(key))        else:            # 如果不是,就在原来节点一半的地方找到节点的坐标            plotTree.xOff = plotTree.xOff + 1 / plotTree.totalW            # 可视化该节点位置            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)            # 并打印输入对应的文字            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))    plotTree.yOff = plotTree.yOff + 1 / plotTree.totalDdef createPlot(inTree):    # 创建一个figure的模版    fig = plt.figure(1, facecolor='green')    fig.clf()    axprops = dict(xticks=[], yticks=[])    # 表示创建一个1行,1列的图,createPlot.ax1 为第 1 个子图,    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)    plotTree.totalW = float(getNumLeafs(inTree))    plotTree.totalD = float(getTreeDepth(inTree))    # 半个节点的长度    plotTree.xOff = -0.5 / plotTree.totalW    plotTree.yOff = 1.0    plotTree(inTree, (0.5, 1.0), '')    plt.show()# # 测试画图# def createPlot():#     fig = plt.figure(1, facecolor='white')#     fig.clf()#     # ticks for demo puropses#     createPlot.ax1 = plt.subplot(111, frameon=False)#     plotNode('a decision node', (0.5, 0.1), (0.1, 0.5), decisionNode)#     plotNode('a leaf node', (0.8, 0.1), (0.3, 0.8), leafNode)#     plt.show()# 测试数据集def retrieveTree(i):    listOfTrees = [        {'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}},        {'no surfacing': {0: 'no', 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}    ]    return listOfTrees[i]# myTree = retrieveTree(1)# createPlot(myTree)
#项目一:判定鱼类和非鱼类#DecisionTree.py#!/usr/bin/python# -*- coding: UTF-8 -*-'''Created on Oct 12, 2010Update on 2017-05-18Decision Tree Source Code for Machine Learning in Action Ch. 3@author: Peter Harrington/片刻《机器学习实战》更新地址:https://github.com/apachecn/MachineLearning'''print(__doc__)import operatorfrom math import log#import decisionTreePlot as dtPlotfrom collections import Counterdef createDataSet():    """    Desc:        创建数据集    Args:        无需传入参数    Returns:        返回数据集和对应的label标签    """    # dataSet 前两列是特征,最后一列对应的是每条数据对应的分类标签    dataSet = [[1, 1, 'yes'],               [1, 1, 'yes'],               [1, 0, 'no'],               [0, 1, 'no'],               [0, 1, 'no']]    # dataSet = [['yes'],    #         ['yes'],    #         ['no'],    #         ['no'],    #         ['no']]    # labels  露出水面   脚蹼,注意:这里的labels是写的 dataSet 中特征的含义,并不是对应的分类标签或者说目标变量    labels = ['no surfacing', 'flippers']    # 返回    return dataSet, labelsdef calcShannonEnt(dataSet):    """    Desc:        calculate Shannon entropy -- 计算给定数据集的香农熵    Args:        dataSet -- 数据集    Returns:        shannonEnt -- 返回 每一组 feature 下的某个分类下,香农熵的信息期望    """    # -----------计算香农熵的第一种实现方式start----------------------------------------------    # 求list的长度,表示计算参与训练的数据量    numEntries = len(dataSet)    # 下面输出我们测试的数据集的一些信息    # 例如: numEntries:  5 是下面的代码的输出    # print(type(dataSet), 'numEntries: ', numEntries)    # 计算分类标签label出现的次数    labelCounts = {}    # the the number of unique elements and their occurance    for featVec in dataSet:        # 将当前实例的标签存储,即每一行数据的最后一个数据代表的是标签        currentLabel = featVec[-1]        # 为所有可能的分类创建字典,如果当前的键值不存在,则扩展字典并将当前键值加入字典。每个键值都记录了当前类别出现的次数。        if currentLabel not in labelCounts.keys():            labelCounts[currentLabel] = 0        labelCounts[currentLabel] += 1        # print('-----', featVec, labelCounts)    # 对于label标签的占比,求出label标签的香农熵    shannonEnt = 0.0    for key in labelCounts:        # 使用所有类标签的发生频率计算类别出现的概率。        prob = float(labelCounts[key])/numEntries        # log base 2        # 计算香农熵,以 2 为底求对数        shannonEnt -= prob * log(prob, 2)        # print('---', prob, prob * log(prob, 2), shannonEnt)    # -----------计算香农熵的第一种实现方式end------------------------------------------------    # # -----------计算香农熵的第二种实现方式start--------------------------------------------    # # 统计标签出现的次数    # label_count = Counter(data[-1] for data in dataSet)    # # 计算概率    # probs = [p[1] / len(dataSet) for p in label_count.items()]    # # 计算香农熵    # shannonEnt = sum([-p * log(p, 2) for p in probs])    # # -----------计算香农熵的第二种实现方式end----------------------------------------------    return shannonEntdef splitDataSet(dataSet, index, value):    """    Desc:        划分数据集        splitDataSet(通过遍历dataSet数据集,求出index对应的colnum列的值为value的行)        就是依据index列进行分类,如果index列的数据等于 value的时候,就要将 index 划分到我们创建的新的数据集中    Args:        dataSet  -- 数据集                 待划分的数据集        index -- 表示每一行的index列        划分数据集的特征        value -- 表示index列对应的value值   需要返回的特征的值。    Returns:        index 列为 value 的数据集【该数据集需要排除index列】    """    # -----------切分数据集的第一种方式 start------------------------------------    retDataSet = []    for featVec in dataSet:         # index列为value的数据集【该数据集需要排除index列】        # 判断index列的值是否为value        if featVec[index] == value:            # chop out index used for splitting            # [:index]表示前index行,即若 index 为2,就是取 featVec 的前 index 行            reducedFeatVec = featVec[:index]            '''            请百度查询一下: extend和append的区别            list.append(object) 向列表中添加一个对象object            list.extend(sequence) 把一个序列seq的内容添加到列表中            1、使用append的时候,是将new_media看作一个对象,整体打包添加到music_media对象中。            2、使用extend的时候,是将new_media看作一个序列,将这个序列和music_media序列合并,并放在其后面。            result = []            result.extend([1,2,3])            print(result)            result.append([4,5,6])            print(result)            result.extend([7,8,9])            print(result)            结果:            [1, 2, 3]            [1, 2, 3, [4, 5, 6]]            [1, 2, 3, [4, 5, 6], 7, 8, 9]            '''            reducedFeatVec.extend(featVec[index+1:])            # [index+1:]表示从跳过 index 的 index+1行,取接下来的数据            # 收集结果值 index列为value的行【该行需要排除index列】            retDataSet.append(reducedFeatVec)    # -----------切分数据集的第一种方式 end------------------------------------    # # -----------切分数据集的第二种方式 start------------------------------------    # retDataSet = [data[:index] + data[index + 1:] for data in dataSet for i, v in enumerate(data) if i == index and v == value]    # # -----------切分数据集的第二种方式 end------------------------------------    return retDataSetdef chooseBestFeatureToSplit(dataSet):    """    Desc:        选择切分数据集的最佳特征    Args:        dataSet -- 需要切分的数据集    Returns:        bestFeature -- 切分数据集的最优的特征列    """    # -----------选择最优特征的第一种方式 start------------------------------------    # 求第一行有多少列的 Feature, 最后一列是label列嘛    numFeatures = len(dataSet[0]) - 1    # label的信息熵    baseEntropy = calcShannonEnt(dataSet)    # 最优的信息增益值, 和最优的Featurn编号    bestInfoGain, bestFeature = 0.0, -1    # iterate over all the features    for i in range(numFeatures):        # create a list of all the examples of this feature        # 获取每一个实例的第i+1个feature,组成list集合        featList = [example[i] for example in dataSet]        # get a set of unique values        # 获取剔重后的集合,使用set对list数据进行去重        uniqueVals = set(featList)        # 创建一个临时的信息熵        newEntropy = 0.0        # 遍历某一列的value集合,计算该列的信息熵         # 遍历当前特征中的所有唯一属性值,对每个唯一属性值划分一次数据集,计算数据集的新熵值,并对所有唯一特征值得到的熵求和。        for value in uniqueVals:            subDataSet = splitDataSet(dataSet, i, value)            prob = len(subDataSet)/float(len(dataSet))            newEntropy += prob * calcShannonEnt(subDataSet)        # gain[信息增益]: 划分数据集前后的信息变化, 获取信息熵最大的值        # 信息增益是熵的减少或者是数据无序度的减少。最后,比较所有特征中的信息增益,返回最好特征划分的索引值。        infoGain = baseEntropy - newEntropy        print('infoGain=', infoGain, 'bestFeature=', i, baseEntropy, newEntropy)        if (infoGain > bestInfoGain):            bestInfoGain = infoGain            bestFeature = i    return bestFeature    # -----------选择最优特征的第一种方式 end------------------------------------    # # -----------选择最优特征的第二种方式 start------------------------------------    # # 计算初始香农熵    # base_entropy = calcShannonEnt(dataSet)    # best_info_gain = 0    # best_feature = -1    # # 遍历每一个特征    # for i in range(len(dataSet[0]) - 1):    #     # 对当前特征进行统计    #     feature_count = Counter([data[i] for data in dataSet])    #     # 计算分割后的香农熵    #     new_entropy = sum(feature[1] / float(len(dataSet)) * calcShannonEnt(splitDataSet(dataSet, i, feature[0])) \    #                    for feature in feature_count.items())    #     # 更新值    #     info_gain = base_entropy - new_entropy    #     print('No. {0} feature info gain is {1:.3f}'.format(i, info_gain))    #     if info_gain > best_info_gain:    #         best_info_gain = info_gain    #         best_feature = i    # return best_feature    # # -----------选择最优特征的第二种方式 end------------------------------------def majorityCnt(classList):    """    Desc:        选择出现次数最多的一个结果    Args:        classList label列的集合    Returns:        bestFeature 最优的特征列    """    # -----------majorityCnt的第一种方式 start------------------------------------    classCount = {}    for vote in classList:        if vote not in classCount.keys():            classCount[vote] = 0        classCount[vote] += 1    # 倒叙排列classCount得到一个字典集合,然后取出第一个就是结果(yes/no),即出现次数最多的结果    sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)    # print('sortedClassCount:', sortedClassCount)    return sortedClassCount[0][0]    # -----------majorityCnt的第一种方式 end------------------------------------    # # -----------majorityCnt的第二种方式 start------------------------------------    # major_label = Counter(classList).most_common(1)[0]    # return major_label    # # -----------majorityCnt的第二种方式 end------------------------------------def createTree(dataSet, labels):    """    Desc:        创建决策树    Args:        dataSet -- 要创建决策树的训练数据集        labels -- 训练数据集中特征对应的含义的labels,不是目标变量    Returns:        myTree -- 创建完成的决策树    """    classList = [example[-1] for example in dataSet]    # 如果数据集的最后一列的第一个值出现的次数=整个集合的数量,也就说只有一个类别,就只直接返回结果就行    # 第一个停止条件:所有的类标签完全相同,则直接返回该类标签。    # count() 函数是统计括号中的值在list中出现的次数    if classList.count(classList[0]) == len(classList):        return classList[0]    # 如果数据集只有1列,那么最初出现label次数最多的一类,作为结果    # 第二个停止条件:使用完了所有特征,仍然不能将数据集划分成仅包含唯一类别的分组。    if len(dataSet[0]) == 1:        return majorityCnt(classList)    # 选择最优的列,得到最优列对应的label含义    bestFeat = chooseBestFeatureToSplit(dataSet)    # 获取label的名称    bestFeatLabel = labels[bestFeat]    # 初始化myTree    myTree = {bestFeatLabel: {}}    # 注:labels列表是可变对象,在PYTHON函数中作为参数时传址引用,能够被全局修改    # 所以这行代码导致函数外的同名变量被删除了元素,造成例句无法执行,提示'no surfacing' is not in list    del(labels[bestFeat])    # 取出最优列,然后它的branch做分类    featValues = [example[bestFeat] for example in dataSet]    uniqueVals = set(featValues)    for value in uniqueVals:        # 求出剩余的标签label        subLabels = labels[:]        # 遍历当前选择特征包含的所有属性值,在每个数据集划分上递归调用函数createTree()        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)        # print('myTree', value, myTree)    return myTreedef classify(inputTree, featLabels, testVec):    """    Desc:        对新数据进行分类    Args:        inputTree  -- 已经训练好的决策树模型        featLabels -- Feature标签对应的名称,不是目标变量        testVec    -- 测试输入的数据    Returns:        classLabel -- 分类的结果值,需要映射label才能知道名称    """    # 获取tree的根节点对于的key值    firstStr = list(inputTree.keys())[0]    # 通过key得到根节点对应的value    secondDict = inputTree[firstStr]    # 判断根节点名称获取根节点在label中的先后顺序,这样就知道输入的testVec怎么开始对照树来做分类    featIndex = featLabels.index(firstStr)    # 测试数据,找到根节点对应的label位置,也就知道从输入的数据的第几位来开始分类    key = testVec[featIndex]    valueOfFeat = secondDict[key]    print('+++', firstStr, 'xxx', secondDict, '---', key, '>>>', valueOfFeat)    # 判断分枝是否结束: 判断valueOfFeat是否是dict类型    if isinstance(valueOfFeat, dict):        classLabel = classify(valueOfFeat, featLabels, testVec)    else:        classLabel = valueOfFeat    return classLabeldef storeTree(inputTree, filename):    """    Desc:        将之前训练好的决策树模型存储起来,使用 pickle 模块    Args:        inputTree -- 以前训练好的决策树模型        filename -- 要存储的名称    Returns:        None    """    import pickle    # -------------- 第一种方法 start --------------    fw = open(filename, 'wb')    pickle.dump(inputTree, fw)    fw.close()    # -------------- 第一种方法 end --------------    # -------------- 第二种方法 start --------------    with open(filename, 'wb') as fw:        pickle.dump(inputTree, fw)    # -------------- 第二种方法 start --------------def grabTree(filename):    """    Desc:        将之前存储的决策树模型使用 pickle 模块 还原出来    Args:        filename -- 之前存储决策树模型的文件名    Returns:        pickle.load(fr) -- 将之前存储的决策树模型还原出来    """    import pickle    fr = open(filename, 'rb')    return pickle.load(fr)def fishTest():    """    Desc:        对动物是否是鱼类分类的测试函数,并将结果使用 matplotlib 画出来    Args:        None    Returns:        None    """    # 1.创建数据和结果标签    myDat, labels = createDataSet()    # print(myDat, labels)    # 计算label分类标签的香农熵    # calcShannonEnt(myDat)    # # 求第0列 为 1/0的列的数据集【排除第0列】    # print('1---', splitDataSet(myDat, 0, 1))    # print('0---', splitDataSet(myDat, 0, 0))    # # 计算最好的信息增益的列    # print(chooseBestFeatureToSplit(myDat))    import copy    myTree = createTree(myDat, copy.deepcopy(labels))    print(myTree)    # [1, 1]表示要取的分支上的节点位置,对应的结果值    print(classify(myTree, labels, [1, 1]))    # 画图可视化展现    #dtPlot.createPlot(myTree)    createPlot(myTree)if __name__ == "__main__":     fishTest()    #ContactLensesTest()
89ed26411328b3cd702060f8e3271612.png eb23d0bb4f29d410c46028e437c142b9.png

项目案例2: 使用决策树预测隐形眼镜类型

1、项目概述:

隐形眼镜类型包括硬材质、软材质以及不适合佩戴隐形眼镜。我们需要使用决策树预测患者需要佩戴的隐形眼镜类型。

2、开发流程

  • 收集数据: 提供的文本文件。

  • 解析数据: 解析 tab 键分隔的数据行

  • 分析数据: 快速检查数据,确保正确地解析数据内容,使用 createPlot() 函数绘制最终的树形图。

  • 训练算法: 使用 createTree() 函数。

  • 测试算法: 编写测试函数验证决策树可以正确分类给定的数据实例。

  • 使用算法: 存储树的数据结构,以便下次使用时无需重新构造树。

  • 1 收集数据:提供的文本文件

文本文件数据格式如下:

ee2dadbff84c1e7a2171a80922808e13.png
  • 2 解析数据:解析 tab 键分隔的数据行

lecses = [inst.strip().split('\t') for inst in fr.readlines()]lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate']
  • 3 分析数据:快速检查数据,确保正确地解析数据内容,使用 createPlot() 函数绘制最终的树形图。

>>> treePlotter.createPlot(lensesTree)

  • 4 训练算法:使用 createTree() 函数

>>> lensesTree = trees.createTree(lenses, lensesLabels)>>> lensesTree{'tearRate': {'reduced': 'no lenses', 'normal': {'astigmatic':{'yes':{'prescript':{'hyper':{'age':{'pre':'no lenses', 'presbyopic':'no lenses', 'young':'hard'}}, 'myope':'hard'}}, 'no':{'age':{'pre':'soft', 'presbyopic':{'prescript': {'hyper':'soft', 'myope':'no lenses'}}, 'young':'soft'}}}}}
  • 5 测试算法: 编写测试函数验证决策树可以正确分类给定的数据实例。

  •   6 使用算法: 存储树的数据结构,以便下次使用时无需重新构造树。

使用 pickle 模块存储决策树

def storeTree(inputTree, filename):    impory pickle    fw = open(filename, 'w')    pickle.dump(inputTree, fw)    fw.close()def grabTree(filename):    import pickle    fr = open(filename)    return pickle.load(fr)
!ls datalab/2535/

data.txt  lenses.txt

#项目案例2: 使用决策树预测隐形眼镜类型def ContactLensesTest():    """    Desc:        预测隐形眼镜的测试代码,并将结果画出来    Args:        none    Returns:        none    """    # 加载隐形眼镜相关的 文本文件 数据    fr = open('datalab/2535/lenses.txt')    # 解析数据,获得 features 数据    lenses = [inst.strip().split('\t') for inst in fr.readlines()]    # 得到数据的对应的 Labels    lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate']    # 使用上面的创建决策树的代码,构造预测隐形眼镜的决策树    lensesTree = createTree(lenses, lensesLabels)    print(lensesTree)    # 画图可视化展现    #dtPlot.createPlot(lensesTree)    createPlot(lensesTree)if __name__ == "__main__":    #fishTest()    ContactLensesTest()
822df0ba20127f584b1a1e3b75841ca0.png 5f9560df151c58fc8a665fc7ec11a90d.png

281c106d8756ab00d53bb8b7f55e6500.gif

点击下方图片即可阅读

1af746aa6d74ca4a70bc81cf4909ff76.png

那么如何了解线性回归的原理和算法呢?

befd4ac61095da7a5e81e5f31e325084.png

分类算法评估中的“它们”有什么用处?

964c5404b3ce6b5ea554e25bdf48994f.png

学好Scikit-Learn,

于是你默默地推了一下酷酷的墨镜【上篇】

964c5404b3ce6b5ea554e25bdf48994f.png

学会PyTorch,你就是这条街上最靓的仔~

00e710195f9092145946bc1818698a06.png

如果你也有想分享的干货,可以登录天池实验室(notebook),包括赛题的理解、数据分析及可视化、算法模型的分析以及一些核心的思路等内容

小天会根据你分享内容的数量以及程度,给予丰富的神秘天池大礼以及粮票奖励。分享成功后你也可以通过下方钉钉群?主动联系我们的社区运营同学(钉钉号: yiwen1991)

141ac8075fde95552e6629b0dcb7760c.png

天池宝贝们有任何问题,可在戳“留言”评论或加入钉钉群留言,小天会认真倾听每一个你的建议!

a5be47969e25fe71adea2d955d37ddd6.gif 52ec54fee69b8129ddf89c0a9e120172.png

?

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值