caffe 目标检测 训练教材_caffe目标检测模型训练全过程(三)目标检测第一步

遍历整图查找蝴蝶位置

2018/04/22

训练模型对于识别背景和蝴蝶有比较好的效果,基本对不会识别错误,接下来,将通过整图遍历的原始而又野蛮的方式对一张原始图片进行处理,进而查找到蝴蝶的具体位置。具体思路如下图。对原图进行缩放成理想大小,例如,

最小边长缩放为227*6像素,最大边长等比缩放:

设置滑动窗大小为227*227像素

设置滑动窗移动步长为# 自动step_size

scale =min(img.shape[0],(227*6.0)/img.shape[1])*1.0

step_size = int(min(img.shape[0]*scale,img.shape[1]*scale))/20

print("scale",img.shape[0]*scale,img.shape[1]*scale)

#resize image

scale_img = cv2.resize(img,((int(img.shape[1] * scale), int(img.shape[0] * scale))))

然后通过模型预测每个滑动框的类别,若是蝴蝶(类别1)的概率大于99%,则记录滑动框位置,其后绘制在图片上

具体代码:

# 自动step_size

scale =min(img.shape[0],(227*6.0)/img.shape[1])*1.0

print(scale)

step_size = int(min(img.shape[0]*scale,img.shape[1]*scale))/20

print("scale",img.shape[0]*scale,img.shape[1]*scale)

#resize image

scale_img = cv2.resize(img,((int(img.shape[1] * scale), int(img.shape[0] * scale))))

temp2=scale_img[:]

print(scale_img.shape,temp2.shape,img.shape)

while x+227 < img.shape[0]*scale:

while y+227 < img.shape[1]*scale:

# cv2.rectangle(scale_img,(x,y),(x+227,y+227),(0,0,255),1)

temp = scale_img[x:x+227,y:y+227]

cv2.imwrite("scale_img.jpg",temp)

im = caffe.io.load_image('scale_img.jpg')

print(im.shape)

transformer = caffe.io.Transformer({'data': net_full_conv.blobs['data'].data.shape})

#transformer.set_mean('data', np.load(caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy').mean(1).mean(1))

transformer.set_transpose('data', (2,0,1))

transformer.set_channel_swap('data', (2,1,0))

transformer.set_raw_scale('data', 255.0)

transformed_image = transformer.preprocess('data', im)

net_full_conv.blobs['data'].data[...] = transformed_image

net_full_conv.blobs['data'].reshape(1,3,227,227)

### perform classification

out = net_full_conv.forward()

# make classification map by forward and print prediction indices at each location

# out = net_full_conv.forward_all(data=np.asarray([transformer.preprocess('data', im)]))

print (out['prob'],(x,y))

if (out['prob'][0][1]>0.99):

cv2.rectangle(temp2,(y,x),(y+227,x+227),(0,0,255),2)

# print (out['prob'][0,1].shape,(x,y))

del im

y += step_size

y = 0

x += step_size

cv2.imwrite(imgFile.split('.')[0]+"_result.jpg",temp2)

其程序运行效果如下:

图1 运行效果

从图中可以看出,所标记的框的数量很多,但交际支出就是蝴蝶的维治所在,因此通过算法即可准确画出蝴蝶的位置,此步下次笔记提出。以上图所示,滑动窗的移动粒度step_size比较小,引起蝴蝶位置比较精确,但是消耗的时间比较长,我们试着1.缩放图片;2.调整step_size大小;看看最终效果。

图2 缩放图片后的效果

图3 调整step_size大小

经过上述效果,最终课调整最佳尺寸。

同时,对于检测对象和背景区分度不大的情况下,模型表现力不是很好,如下图所示:

图4 模型变现比较差

图5 模型变现比较差

其原因个人猜测如下:

1. 训练集加测试集样本只选择了100张图片,train datas中没有包含此类信息

2. 模型过拟合比较严重

3. 其他原因

附件:

其他测试结果图如下:

附图1

附图2

附图3

好的,针对你的问题,这里简单介绍一下如何使用caffe-ssd预训练模型进行目标检测caffe-ssd是基于caffe框架实现的单阶段目标检测算法,使用预训练模型可以加快模型训练的速度,同时也可以提高模型检测精度。下面是使用预训练模型目标检测的步骤: 1. 下载预训练模型 caffe-ssd官方提供了一些预训练模型,可以在这里下载:https://github.com/weiliu89/caffe/tree/ssd#models。选择适合自己数据集的模型进行下载。 2. 准备数据集 准备自己的数据集,包括训练集、验证集和测试集。数据集需要满足SSD数据格式要求,即每个样本需要有对应的标注文件,标注文件格式为:类别id、xmin、ymin、xmax、ymax(例如:0 0.1 0.2 0.3 0.4,表示类别为0,左上角坐标为(0.1, 0.2),右下角坐标为(0.3, 0.4))。 3. 修改配置文件 修改caffe-ssd的配置文件,将模型路径、数据路径、类别数等参数配置正确。其中,模型路径需要指定为下载的预训练模型路径。 4. 训练模型 使用修改后的配置文件训练模型训练过程中可以调整学习率、迭代次数等参数,以达到更好的效果。 5. 测试模型 使用测试集对训练好的模型进行测试,并计算模型在测试集上的精度和召回率等指标。 以上就是使用caffe-ssd预训练模型目标检测的基本步骤。需要注意的是,使用预训练模型虽然可以加速模型训练过程,但是如果数据集和预训练模型的差异较大,仍然需要进行微调。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值