tensorflow一维卷积输入_Tensorflow--一维离散卷积

本文详细介绍了Tensorflow中的一维离散卷积,包括full卷积、same卷积和valid卷积的计算原理,并通过示例展示了如何使用Tensorflow的`tf.nn.conv1d`函数进行一维卷积操作。同时,还探讨了一维卷积的傅里叶变换性质,以及如何利用卷积定理进行计算。最后,讨论了具备深度的一维离散卷积,包括张量与卷积核的卷积以及多个张量与多个卷积核的卷积情况。
摘要由CSDN通过智能技术生成

Tensorflow–一维离散卷积

一维离散卷积的运算是一种主要基于向量的计算方式

一.一维离散卷积的计算原理

一维离散卷积通常有三种卷积类型:full卷积,same卷积和valid卷积

1.full卷积

full卷积的计算过程如下:K沿着I顺序移动,每移动一个固定位置,对应位置的值相乘,然后对其求和

其中K称为卷积核或者滤波器或者卷积掩码

2.valid卷积

从full卷积的计算过程可知,如果K靠近I,就会有部分延伸到I之外,valid卷积只考虑能完全覆盖K内的情况,即K在I内部移动的情况

3.same卷积

首先在卷积核K上指定一个锚点,然后将锚点顺序移动到输入张量I的每一个位置处,对应位置相乘然后求和,卷积核锚点的位置一般有以下规则,假设卷积核的长度为FL:

如果FL为奇数,则锚点的位置在(FL-1)/2处

如果FL为偶数,则锚点的位置在(FL-2)/2处

4.full,same,valid卷积的关系

假设一个长度为L的一维张量与一个长度为FL的卷积核卷积,其中Fa代表计算same卷积时,锚点的位置索引,则两者的full卷积与same卷积的关系如下:

Csame=Cfull[FL-Fa-1,FL-Fa+L-2]

full卷积C与valid卷积C的关系如下:

C=C[FL-1,L-1]

same卷积C与valid卷积C的关系如下:

C=C[FL-Fa-2,L-Fa_2]

注意:大部分书籍中对卷积运算的定义分为两步。第1步是将卷积核翻转180;第2步是将翻转的结果沿输入张量顺序移动,每移动到一个固定位置,对应位置相乘然后求和,如Numpy中实现的卷积函数convolve和Scipy中实现的卷积函数convolve,函数内部都进行了以上两步运算。可见,最本质的卷积运算还是在第2步。Tensorflow中实现的卷积函数

tf.nn.conv1d(value,filters,stride,padding,use_cudnn_on_gpu=None,data_format=None,name=None)

其内部就没有进行第1步操作,而是直接进行了第2步操作

import tensorflow as tf

# 输入张量I

I=tf.constant(

[

[[3],[4],[1],[5],[6]]

]

,tf.float32

)

# 卷积核

K=tf.constant(

[

[[-1]],

[[-2]],

[[2]],

[[1]]

]

,tf.float32

)

I_conv1d_K=tf.nn.conv1d(I,K,1,'SAME')

session=tf.Session()

print(session.run(I_conv1d_K))

[[[ 3.]

[ -4.]

[ 10.]

[ 1.]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值