pytorch 获取模型参数_PyTorch模型读写、参数初始化、Finetune

本文介绍了PyTorch中模型参数的保存与加载,包括完整模型和部分模型参数的处理方式。还讨论了模型参数的初始化,并提供了初始化函数示例。此外,详细讲解了模型的Finetune过程,如何根据需求冻结或更新模型的不同层,并展示了设置不同学习率的示例。最后列举了PyTorch中可用的预训练模型资源。
摘要由CSDN通过智能技术生成

使用了一段时间PyTorch,感觉爱不释手(0-0),听说现在已经有C++接口。在应用过程中不可避免需要使用Finetune/参数初始化/模型加载等。

模型保存/加载

1.所有模型参数

训练过程中,有时候会由于各种原因停止训练,这时候我们训练过程中就需要注意将每一轮epoch的模型保存(一般保存最好模型与当前轮模型)。一般使用pytorch里面推荐的保存方法。该方法保存的是模型的参数。

#保存模型到checkpoint.pth.tar

torch.save(model.module.state_dict(), ‘checkpoint.pth.tar’)

对应的加载模型方法为(这种方法需要先反序列化模型获取参数字典,因此必须先load模型,再load_state_dict):

mymodel.load_state_dict(torch.load(‘checkpoint.pth.tar’))

有了上面的保存后,现以一个例子说明如何在inference AND/OR resume train使用。

#保存模型的状态,可以设置一些参数,后续可以使用

state = {'epoch': epoch + 1,#保存的当前轮数 'state_dict': mymodel.state_dict(),#训练好的参数 'optimizer': optimizer.state_dict(),#优化器参数,为了后续的resume 'best_pred': best_pred#当前最好的精度 ,....,...} #保存模型到checkpoint.pth.tar torch.save(state, ‘checkpoint.pth.tar’) #如果是best,则复制过去 if is_best: shutil.copyfile(filename, directory + 'model_best.pth.tar') checkpoint = torch.load('model_best.pth.tar') model.load_state_dict(checkpoint['state_dict'])#模型参数 optimizer.load_state_dict(checkpoint['optimizer'])#优化参数 epoch = checkpoint['epoch']#epoch,可以用于更新学习率等 #有了以上的东西,就可以继续重新训练了,也就不需要担心停止程序重新训练。 train/eval .... ....

上面是pytorch建议使用的方法,当然还有第二种方法。这种方法灵活性不高,不推荐。

#保存

torch.save(mymodel,‘checkpoint.pth.tar’) #加载 mymodel = torch.load(‘checkpoint.pth.tar’)

2.部分模型参数

在很多时候,我们加载的是已经训练好的模型,而训练好的模型可能与我们定义的模型不完全一样,而我们只想使用一样的那些层的参数。

有几种解决方法:

(1)直接在训练好的模型开始搭建自己的模型,就是先加载训练好的模型,然后再它基础上定义自己的模型;

model_ft = models.resnet18(pretrained=use_pretrained) self.conv1 = model_ft.conv1 self.bn = model_ft.bn ... ...

(2) 自己定义好模型,直接加载模型

#第一种方法:

mymodelB = TheModelBClass(*args, **kwargs) # strict=False,设置为false,只保留键值相同的参数 mymodelB.load_state_dict(model_zoo.load_url(model_urls['resnet18']), strict=False) #第二种方法: # 加载模型 model_pretrained = models.resnet18(pretrained=use_pretrained) # mymodel's state_dict, # 如: conv1.weight # conv1.bias mymodelB_dict = mymodelB.state_dict() # 将model_pretrained的建与自定义模型的建进行比较,剔除不同的 pretrained_dict = {k: v for k, v in model_pretrained.items() if k in mymodelB_dict} # 更新现有的model_dict mymodelB_dict.update(pretrained_dict) # 加载我们真正需要的state_dict mymodelB.load_state_dict(mymodelB_dict) # 方法2可能更直观一些

参数初始化

第二个问题是参数初始化问题,在很多代码里面都会使用到,毕竟不是所有的都是有预训练参数。这时就需要对不是与预训练参数进行初始化。pytorch里面的每个Tensor其实是对Variabl的封装,其包含data、grad等接口,因此可以用这些接口直接赋值。这里也提供了怎样把其他框架(caffe/tensorflow/mxnet/gluonCV等)训练好的模型参数直接赋值给pytorch.其实就是对data直接赋值。

pytorch提供了初始化参数的方法:

def weight_init(m): if isinstance(m,nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0,math.sqrt(2./n)) elif isinstance(m,nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_()

但一般如果没有很大需求初始化参数,也没有问题(不确定性能是否有影响的情况下),pytorch内部是有默认初始化参数的。

Fintune

最后就是精调了,我们平时做实验,至少backbone是用预训练的模型,将其用作特征提取器,或者在它上面做精调。

用于特征提取的时候,要求特征提取部分参数不进行学习,而pytorch提供了requires_grad参数用于确定是否进去梯度计算,也即是否更新参数。以下以minist为例,用resnet18作特征提取:

#加载预训练模型

model = torchvision.models.resnet18(pretrained=True) #遍历每一个参数,将其设置为不更新参数,即不学习 for param in model.parameters(): param.requires_grad = False # 将全连接层改为mnist所需的10类,注意:这样更改后requires_grad默认为True model.fc = nn.Linear(512, 10) # 优化 optimizer = optim.SGD(model.fc.parameters(), lr=1e-2, momentum=0.9)

用于全局精调时,我们一般对不同的层需要设置不同的学习率,预训练的层学习率小一点,其他层大一点。这要怎么做呢?

# 加载预训练模型

model = torchvision.models.resnet18(pretrained=True) model.fc = nn.Linear(512, 10) # 参考:https://blog.csdn.net/u012759136/article/details/65634477 ignored_params = list(map(id, model.fc.parameters())) base_params = filter(lambda p: id(p) not in ignored_params, model.parameters()) # 对不同参数设置不同的学习率 params_list = [{'params': base_params, 'lr': 0.001},] params_list.append({'params': model.fc.parameters(), 'lr': 0.01}) optimizer = torch.optim.SGD(params_list, 0.001, momentum=args.momentum, weight_decay=args.weight_decay)

最后整理一下目前,pytorch预训练的基础模型:

(1)torchvision

torchvision里面已经提供了不同的预训练模型,一般也够用了。

包含了alexnet/densenet各种版本(densenet121/densenet169/densenet201/densenet161)/inception_v3/resnet各种版本(resnet18', 'resnet34', 'resnet50', 'resnet101','resnet152')/SqueezeNet各种版本( 'squeezenet1_0', 'squeezenet1_1')/VGG各种版本( 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn','vgg19_bn', 'vgg19')

(2)其他预训练好的模型,如,SENet/NASNet等。

(3)gluonCV转pytorch的模型,包括,分类网络,分割网络等,这里的精度均比其他框架高几个百分点。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值