java词袋_视觉单词模型、词袋模型BoW

多用于图像检索、分类

3.2.1.4 视觉单词模型

视觉词袋(BoVW,Bag of Visual Words)模型,是“词袋”(BoW,Bag of Words)模型从自然语言处理与分析领域向图像处理与分析领域的一次自然推广。对于任意一幅图像,BoVW模型提取该图像中的基本元素,并统计该图像中这些基本元素出现的频率,用直方图的形式来表示。通常使用“图像局部特征”来类比BoW模型中的单词,如SIFT、SURF、HOG等特征,所以也称视觉词袋模型。图像BoVW模型表示的直观示意图如图所示。

9126eab2b27965e425d5fe843f92b9af.png

图3-3 图像表示为视觉单词模型

利用BoVW模型表示图像,获得图像的全局直方图表示,主要有四个关键步骤:

Step 1:图像局部特征提取(Image Local Features Extrication)。根据具体应用考虑,综合考虑特征的独特性、提取算法复杂性、效果好坏等选择特征。利用局部特征提取算法,从图像中提取局部特征。

Step 2:视觉词典构造(Visual Dictionary Construction)。一般是从图像库中选取一部分来自不同场景或类别的图像来组成训练图像集,并提取其局部特征,然后对训练图像的所有局部特征向量通过适当的去冗余处理得到一些有代表性的特征向量,将其定义为视觉单词。通常所采用的处理方法是对训练图像的所有局部特征向量进行聚类分析,将聚类中心定义为视觉单词。所有视觉单词组成视觉词典,用于图像的直方图表示。

Step 3:特征向量量化(Feature Vector Quantization)。BoVW模型采用向量量化技术实现。现对图像局部特征的编码。向量量化结果是将图像的局部特征向量量化为视觉单词中与其距离最相似的视觉单词。向量量化过程实际上是一个搜索过程,通常采用最近邻搜索算法,搜索出与图像局部特征向量最为匹配的视觉单词。

Step 4:用视觉单词直方图表示图像,也称为量化编码集成(Pooling)。一幅图像的所有局部特征向量被量化后,可统计出视觉词典中每个视觉单词在该图像中出现的频数,得到一个关于视觉单词的直方图,其本质是上一步所得量化编码的全局统计结果,是按视觉单词索引顺序组成的一个数值向量(各个元素的值还可以根据一定的规则进行加权)。该向量即为图像的最终表示形式。

3.2.1.5 非结构图像数据的结构化描述

图像数据的结构化描述,可以用图像稀疏特征学习的统一框架进行表示。图像稀疏特征学习问题,是在提取图像局部特征的基础上,采用学习方法实现对图像的稀疏表示,最终以一个稀疏向量的形式来表示图像,描述图像的视觉内容。其本质仍然是一个图像特征提取问题:以图像局部特征集为数据源提取可以表征其信息的单个稀疏特征(向量)。在机器学习或稀疏表示研究领域,也称之为特征学习或稀疏学习问题。图像原始数据或图像局部特征数据本身都是高维的,它们从不同的层次(像素层、比像素高一级的特征层)对图像内容进行了描述,但往往都不是稀疏的。高维度和稀疏性是形成图像有效特征表示的重要属性。基于图像局部特征的稀疏学习的实现过程可用图3-4示意。

fac2ec78162bcf65d17a0fca8d4cca4a.png

图3-4 稀疏学习的实现过程

具体地,选取图像库中的全部或部分图像作为训练图像,提取底层局部特征,通过词典学习方法(如聚类方法或基于稀疏学习的方法)得到超完备视觉词典,然后以此视觉词典作为编码码本,对库图像的局部特征进行特征编码,如采用向量量化编码、稀疏编码或局部编码等方法,得到每幅库图像的局部稀疏编码矩阵,进一步进行特征集成,如采用Sum Pooling、MaxPooling等集成函数或SPM空间集成策略,就可得到图像库中每幅图像的稀疏特征(即全局稀疏表示);另一方面,应用系统的输入图像的局部特征被提取,并利用训练好的视觉词典对其进行相同的特征编码和特征集成操作,就可得到输入图像的全局稀疏特征。

【其他文献】

视觉SLAM之词袋(bag of words) 模型与K-means聚类算法浅析(1) - jason来自星星 - 博客园 https://www.cnblogs.com/zjiaxing/p/5548265.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值