我只关心数学的应用,就算你哪天告诉我「数学的基础崩塌了」,我也无所谓。只要能用,能得出正确的结果,我觉得就可以了。
——(对我「经常传教集合论大基数等毫无卵用的数学知识」行为感到心态爆炸的)巨佬舍友
零、前言
作为一个工科生,对于数学的各种奇奇怪怪的符号属实是提不起兴趣。和巨佬舍友类似的,比起看着一堆奇奇怪怪的特殊函数犯懵,我还是更喜欢相对更直观的、有着相对初等解析形式的渐近解。然而笔者信息检索能力很差,各种函数的渐近解也不知道上哪里搜,知网也找不到(如果有知道怎么检索这些的大佬,欢迎到评论区指点小生一二)。花了九牛二虎之力才在网上找到了一本1991年的《渐近分析》pdf书,然而讲的也不是我想要的。
于是我在极度愤怒的情况下(划掉),造了一个(肯定前人早就造好的)轮子,给出了一些常用的特殊函数的渐近解。而后面,我将通过纯粹直观的方式来推导出《渐近分析》这本书里面给出的一个重要的渐近估计方法(Laplace渐近方法),并且通过该渐近方法给出我们常用的「斯他林公式」、「Wallis公式」等常用的渐近公式。
由于知乎的TeX公式崩过一次,基于对知乎TeX功能的不信任以及自己想要偷懒的想法(其实这才是主要原因,划掉),部分公式推导过程我就直接从本地端搬运图片形式的公式了。其实我在本地端无聊时写了很多东西,只是懒得搬运上来而已233(怠惰)。
一、几个特殊函数的渐近展开
说实话,里面的推导都不严谨,经常定义域都跑到发散的地方了。但是确实拟合得不错。不过值得注意的是:渐近展开阶数一定不能多,渐近展开的前提是x充分大,如果x不是充分大,那么可能展开阶数越大反而误差越大。具体应该展开多少阶我并没有研究过,不知道有没有前人研究过这个问题,反正我就是mathematica画图,看看是否足够近似就OK了。
注意:由于这些展开是我自己造的轮子,用mathematica画了个图看起来结果差不多就放上去了(典型工科生思维),可能有很多错误之处,还望读者不吝指出。
1、正态分布的误差估计函数
先来个粗糙的估计
再上渐近展开
2、指数积分函数
3、对数积分函数
4、正弦积分函数(这是我猜出来的,不会证,只猜出来了一阶展开,更多的我也没辙了)(后面我又证出来了,详见后文)
前三个公式我有证明(虽然其中一步定义域弄发散了,按道理来说这证明有问题,但它确实能work,我也不知道为啥,反正mathematica画出的图像表示它确实拟合得很好,反正我是工科生,