linux下cuda文件如何编译,linux cuda 如何编译

Numba是一个Python即时编译器,尤其适用于使用NumPy和循环的代码。它能在nopython模式下编译为机器代码,提升执行速度。Numba支持Windows、OSX和Linux,以及CUDA GPU编译。尽管不适用于Pandas等非NumPy代码,但它提供了多种装饰器如@jit、@vectorize等。Numba的GPU目标允许用Python编写CUDA和ROC GPU内核,简化GPU计算。通过示例展示,使用Numba后的执行时间显著减少。
摘要由CSDN通过智能技术生成

1.1。Numba的约5分钟指南 Numba是Python的即时编译器,它最适用于使用NumPy数组和函数以及循环的代码。使用Numba的最常用方法是通过其装饰器集合,可以应用于您的函数来指示Numba编译它们。当调用Numba修饰函数时,它被编译为机器代码“及时”执行,并且您的全部或部分代码随后可以以本机机器代码速度运行!

开箱即用的Numba使用以下方法:

操作系统:Windows(32位和64位),OSX和Linux(32位和64位) 架构:x86,x86_64,ppc64le。在armv7l,armv8l(aarch64)上进行实验。 GPU:Nvidia CUDA。AMD ROC的实验。 CPython的 NumPy 1.10 - 最新 1.1.1。我怎么得到它? Numba可作为畅达包为 蟒蛇Python发布:

$ conda install numba Numba还有pip可供选择:

$ pip install numba Numba也可以 从源代码编译,虽然我们不建议首次使用Numba用户。

Numba通常用作核心包,因此其依赖性保持在绝对最小值,但是,可以按如下方式安装额外的包以提供其他功能:

scipy- 支持编译numpy.linalg功能。 colorama - 支持回溯/错误消息中的颜色突出显示。 pyyaml - 通过YAML配置文件启用Numba配置。 icc_rt - 允许使用Intel SVML(高性能短矢量数学库,仅限x86_64)。安装说明在 性能提示中。 1.1.2。Numba会为我的代码工作吗? 这取决于你的代码是什么样的,如果你的代码是以数字为导向的(做了很多数学运算),经常使用NumPy和/或有很多循环

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值