cuda linux编译器_Linux平台CUDA+OpenCV3.4配置

本文介绍了如何在Linux环境下配置CUDA和OpenCV3.4,包括CUDA环境安装、CUDA编译流程以及CUDA与OpenCV的混合编译方法。通过nvcc编译CUDA代码,并在Makefile中处理CUDA与C++的混合编译,确保OpenCV头文件路径的正确引用。
摘要由CSDN通过智能技术生成

前段时间,在TX2上装了OpenCV3.4,TX2更新源失败的问题,OpenCV内部很多函数都已经实现了GPU加速,但是我们手动写的函数,想要通过GPU加速就需要手动调用CUDA进行加速。下面介绍Linux平台的环境配置以及与OpenCV混合编译。

Linux平台CUDA+OpenCV3.4配置

1 环境安装

首先需要安装OpenCV及CUDA环境安装,有TX2平台下OpenCV和CUDA参考百度。注意TX2自带了OpenCV2.14,如果需要安装高版本的OpenCV话需要注意多版本管理的问题。安装完成后,可以编译OpenCV例程来判断OpenCV是否安转完成,CUDA安装可以在终端输入

nvcc

如果终端打印下面信息,表示安装完成

2 CUDA编译流程

CUDA的程序通过nvcc编译器编译成可执行文件,CUDA的可执行文件有两种,分别是在Host上执行的CPU相关代码,另一部分是在Device上执行的GPU代码,nvcc编译的指令与gcc/g++编译器差不多,基本指令如下

nvcc --gpu-architecture=compute_62 --gpu-code=compute_62-I/usr/local/cuda/include/ -c kernels.cu -o kernels.o

其中:

--gpu-architecture和--gpu-code指定了GPU的计算能力,请根据自己GPU的运算能力修改,有关GPU运算能力可以在这里查找(NVIDIA官网挂了,将就着在维基百科里面看吧),--gpu-archit

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值